Example #1
0
def test_dataset_load_features_sift(tmpdir):
    data = data_generation.create_berlin_test_folder(tmpdir)

    assert len(data.images()) == 3

    data.config["feature_type"] = "SIFT"

    image = data.images()[0]
    points = np.random.random((3, 4))
    descriptors = np.random.random((128, 4))
    colors = np.random.random((3, 4))
    segmentations = np.random.random((3, 4))
    instances = np.random.random((3, 4))

    semantic_data = features.SemanticData(
        segmentations, instances, data.segmentation_labels()
    )
    before = features.FeaturesData(points, descriptors, colors, semantic_data)
    data.save_features(image, before)
    after = data.load_features(image)

    assert np.allclose(points, after.points)
    assert np.allclose(descriptors, after.descriptors)
    assert np.allclose(colors, after.colors)
    assert np.allclose(
        segmentations,
        after.semantic.segmentation,
    )
    assert np.allclose(instances, after.semantic.instances)
Example #2
0
 def load_features(self, image: str) -> Optional[features.FeaturesData]:
     return features.FeaturesData(
         self.features[image],
         self.descriptors[image],
         self.colors[image],
         None,
     )
Example #3
0
 def load_points_colors_segmentations_instances(
         self, data: DataSetBase, image: str) -> Optional[ft.FeaturesData]:
     all_features_data = self._load_features_nocache(data, image)
     if not all_features_data:
         return None
     return ft.FeaturesData(
         all_features_data.points,
         None,
         all_features_data.colors,
         all_features_data.semantic,
     )
Example #4
0
def import_features(db, data, image_map, camera_map):
    cursor = db.cursor()
    cursor.execute("SELECT image_id, rows, cols, data FROM keypoints;")
    keypoints = {}
    colors = {}
    for row in cursor:
        image_id, n_rows, n_cols, arr = row
        filename, camera_id = image_map[image_id]
        cam = camera_map[camera_id]

        arr = np.fromstring(arr, dtype=np.float32).reshape((n_rows, n_cols))

        rgb = data.load_image(filename).astype(np.float32)
        xc = np.clip(arr[:, 1].astype(int), 0, rgb.shape[0] - 1)
        yc = np.clip(arr[:, 0].astype(int), 0, rgb.shape[1] - 1)
        colors[image_id] = rgb[xc, yc, :]

        arr[:, :2] = features.normalized_image_coordinates(
            arr[:, :2], cam.width, cam.height)
        if n_cols == 4:
            x, y, s, o = arr[:, 0], arr[:, 1], arr[:, 2], arr[:, 3]
        elif n_cols == 6:
            x, y = arr[:, 0], arr[:, 1]
            s, o = get_scale_orientation_from_affine(arr)
        elif n_cols == 2:
            x, y = arr[:, 0], arr[:, 1]
            s = np.zeros_like(x)
            o = np.zeros_like(x)
        else:
            raise ValueError
        s = s / max(cam.width, cam.height)
        keypoints[image_id] = np.vstack((x, y, s, o)).T

    cursor.execute("SELECT image_id, rows, cols, data FROM descriptors;")
    for row in cursor:
        image_id, n_rows, n_cols, arr = row
        filename, _ = image_map[image_id]
        descriptors = np.fromstring(arr, dtype=np.uint8).reshape(
            (n_rows, n_cols))
        kp = keypoints[image_id]
        features_data = features.FeaturesData(kp, descriptors,
                                              colors[image_id], None)
        data.save_features(filename, features_data)

    cursor.close()
    return keypoints
def generate_track_data(
    reconstruction: types.Reconstruction,
    maximum_depth: float,
    projection_noise: float,
    gcp_noise: Tuple[float, float],
    gcps_count: Optional[int],
    gcp_shift: Optional[np.ndarray],
    on_disk_features_filename: Optional[str],
) -> Tuple[
    sd.SyntheticFeatures, pymap.TracksManager, Dict[str, pymap.GroundControlPoint]
]:
    """Generate projection data from a reconstruction, considering a maximum
    viewing depth and gaussian noise added to the ideal projections.
    Returns feature/descriptor/color data per shot and a tracks manager object.
    """

    tracks_manager = pymap.TracksManager()

    feature_data_type = np.float32
    desc_size = 128
    non_zeroes = 5

    points_ids = list(reconstruction.points)
    points_coordinates = [p.coordinates for p in reconstruction.points.values()]
    points_colors = [p.color for p in reconstruction.points.values()]

    # generate random descriptors per point
    track_descriptors = []
    for _ in points_coordinates:
        descriptor = np.zeros(desc_size)
        for _ in range(non_zeroes):
            index = np.random.randint(0, desc_size)
            descriptor[index] = np.random.random() * 255
        track_descriptors.append(descriptor.round().astype(feature_data_type))

    # should speed-up projection queries
    points_tree = spatial.cKDTree(points_coordinates)

    start = time.time()
    features = sd.SyntheticFeatures(on_disk_features_filename)
    default_scale = 0.004
    for index, (shot_index, shot) in enumerate(reconstruction.shots.items()):
        # query all closest points
        neighbors = list(
            sorted(points_tree.query_ball_point(shot.pose.get_origin(), maximum_depth))
        )

        # project them
        projections = shot.project_many(
            np.array([points_coordinates[c] for c in neighbors])
        )

        # shot constants
        center = shot.pose.get_origin()
        z_axis = shot.pose.get_rotation_matrix()[2]
        is_panorama = pygeometry.Camera.is_panorama(shot.camera.projection_type)
        perturbation = float(projection_noise) / float(
            max(shot.camera.width, shot.camera.height)
        )
        sigmas = np.array([perturbation, perturbation])

        # pre-generate random perturbations
        perturbations = np.random.normal(0.0, sigmas, (len(projections), 2))

        # run and check valid projections
        projections_inside = []
        descriptors_inside = []
        colors_inside = []
        for i, (p_id, projection) in enumerate(zip(neighbors, projections)):
            if not _is_inside_camera(projection, shot.camera):
                continue

            point = points_coordinates[p_id]
            if not is_panorama and not _is_in_front(point, center, z_axis):
                continue

            # add perturbation
            projection += perturbations[i]

            # push data
            color = points_colors[p_id]
            original_id = points_ids[p_id]
            projections_inside.append([projection[0], projection[1], default_scale])
            descriptors_inside.append(track_descriptors[p_id])
            colors_inside.append(color)
            obs = pymap.Observation(
                projection[0],
                projection[1],
                default_scale,
                color[0],
                color[1],
                color[2],
                len(projections_inside) - 1,
            )
            tracks_manager.add_observation(str(shot_index), str(original_id), obs)
        features[shot_index] = oft.FeaturesData(
            np.array(projections_inside),
            np.array(descriptors_inside),
            np.array(colors_inside),
            None,
        )

        if index % 100 == 0:
            logger.info(
                f"Flushing images # {index} ({(time.time() - start)/(index+1)} sec. per image"
            )
            features.sync()

    gcps = {}
    if gcps_count is not None and gcp_shift is not None:
        all_track_ids = list(tracks_manager.get_track_ids())
        gcps_ids = [
            all_track_ids[i]
            for i in np.random.randint(len(all_track_ids) - 1, size=gcps_count)
        ]

        sigmas_gcp = np.random.normal(
            0.0,
            np.array([gcp_noise[0], gcp_noise[0], gcp_noise[1]]),
            (len(gcps_ids), 3),
        )
        for i, gcp_id in enumerate(gcps_ids):
            point = reconstruction.points[gcp_id]
            gcp = pymap.GroundControlPoint()
            gcp.id = f"gcp-{gcp_id}"
            enu = point.coordinates + gcp_shift + sigmas_gcp[i]
            lat, lon, alt = reconstruction.reference.to_lla(*enu)
            gcp.lla = {"latitude": lat, "longitude": lon, "altitude": alt}
            gcp.has_altitude = True
            for shot_id, obs in tracks_manager.get_track_observations(gcp_id).items():
                o = pymap.GroundControlPointObservation()
                o.shot_id = shot_id
                o.projection = obs.point
                gcp.add_observation(o)
            gcps[gcp.id] = gcp

    return features, tracks_manager, gcps
Example #6
0
def detect(
    image: str,
    image_array: np.ndarray,
    segmentation_array: Optional[np.ndarray],
    instances_array: Optional[np.ndarray],
    data: DataSetBase,
    force: bool = False,
) -> None:
    log.setup()

    need_words = (
        data.config["matcher_type"] == "WORDS"
        or data.config["matching_bow_neighbors"] > 0
    )
    has_words = not need_words or data.words_exist(image)
    has_features = data.features_exist(image)

    if not force and has_features and has_words:
        logger.info(
            "Skip recomputing {} features for image {}".format(
                data.feature_type().upper(), image
            )
        )
        return

    logger.info(
        "Extracting {} features for image {}".format(data.feature_type().upper(), image)
    )

    start = timer()

    p_unmasked, f_unmasked, c_unmasked = features.extract_features(
        image_array, data.config, is_high_res_panorama(data, image, image_array)
    )

    # Load segmentation and bake it in the data
    if data.config["features_bake_segmentation"]:
        exif = data.load_exif(image)
        s_unsorted, i_unsorted = bake_segmentation(
            image_array, p_unmasked, segmentation_array, instances_array, exif
        )
        p_unsorted = p_unmasked
        f_unsorted = f_unmasked
        c_unsorted = c_unmasked
    # Load segmentation, make a mask from it mask and apply it
    else:
        s_unsorted, i_unsorted = None, None
        fmask = masking.load_features_mask(data, image, p_unmasked)
        p_unsorted = p_unmasked[fmask]
        f_unsorted = f_unmasked[fmask]
        c_unsorted = c_unmasked[fmask]

    if len(p_unsorted) == 0:
        logger.warning("No features found in image {}".format(image))

    size = p_unsorted[:, 2]
    order = np.argsort(size)
    p_sorted = p_unsorted[order, :]
    f_sorted = f_unsorted[order, :]
    c_sorted = c_unsorted[order, :]
    if s_unsorted is not None:
        semantic_data = features.SemanticData(
            s_unsorted[order],
            i_unsorted[order] if i_unsorted is not None else None,
            data.segmentation_labels(),
        )
    else:
        semantic_data = None
    features_data = features.FeaturesData(p_sorted, f_sorted, c_sorted, semantic_data)
    data.save_features(image, features_data)

    if need_words:
        bows = bow.load_bows(data.config)
        n_closest = data.config["bow_words_to_match"]
        closest_words = bows.map_to_words(
            f_sorted, n_closest, data.config["bow_matcher_type"]
        )
        data.save_words(image, closest_words)

    end = timer()
    report = {
        "image": image,
        "num_features": len(p_sorted),
        "wall_time": end - start,
    }
    data.save_report(io.json_dumps(report), "features/{}.json".format(image))
def generate_track_data(
        reconstruction: types.Reconstruction, maximum_depth: float,
        noise: float
) -> Tuple[Dict[str, oft.FeaturesData], pysfm.TracksManager, ]:
    """Generate projection data from a reconstruction, considering a maximum
    viewing depth and gaussian noise added to the ideal projections.
    Returns feature/descriptor/color data per shot and a tracks manager object.
    """

    tracks_manager = pysfm.TracksManager()

    feature_data_type = np.float32
    desc_size = 128
    non_zeroes = 5

    points_ids = list(reconstruction.points)
    points_coordinates = [
        p.coordinates for p in reconstruction.points.values()
    ]
    points_colors = [p.color for p in reconstruction.points.values()]

    # generate random descriptors per point
    track_descriptors = []
    for _ in points_coordinates:
        descriptor = np.zeros(desc_size)
        for _ in range(non_zeroes):
            index = np.random.randint(0, desc_size)
            descriptor[index] = np.random.random() * 255
        track_descriptors.append(descriptor.round().astype(feature_data_type))

    # should speed-up projection queries
    points_tree = spatial.cKDTree(points_coordinates)

    features = {}
    default_scale = 0.004
    for shot_index, shot in reconstruction.shots.items():
        # query all closest points
        neighbors = list(
            sorted(
                points_tree.query_ball_point(shot.pose.get_origin(),
                                             maximum_depth)))

        # project them
        projections = shot.project_many(
            np.array([points_coordinates[c] for c in neighbors]))

        # shot constants
        center = shot.pose.get_origin()
        z_axis = shot.pose.get_rotation_matrix()[2]
        is_panorama = pygeometry.Camera.is_panorama(
            shot.camera.projection_type)
        perturbation = float(noise) / float(
            max(shot.camera.width, shot.camera.height))
        sigmas = np.array([perturbation, perturbation])

        # pre-generate random perturbations
        perturbations = np.random.normal(0.0, sigmas, (len(projections), 2))

        # run and check valid projections
        projections_inside = []
        descriptors_inside = []
        colors_inside = []
        for i, (p_id, projection) in enumerate(zip(neighbors, projections)):
            if not _is_inside_camera(projection, shot.camera):
                continue

            point = points_coordinates[p_id]
            if not is_panorama and not _is_in_front(point, center, z_axis):
                continue

            # add perturbation
            projection += perturbations[i]

            # push data
            color = points_colors[p_id]
            original_id = points_ids[p_id]
            projections_inside.append(
                [projection[0], projection[1], default_scale])
            descriptors_inside.append(track_descriptors[p_id])
            colors_inside.append(color)
            obs = pysfm.Observation(
                projection[0],
                projection[1],
                default_scale,
                color[0],
                color[1],
                color[2],
                len(projections_inside) - 1,
            )
            tracks_manager.add_observation(str(shot_index), str(original_id),
                                           obs)
        features[shot_index] = oft.FeaturesData(
            np.array(projections_inside),
            np.array(descriptors_inside),
            np.array(colors_inside),
            None,
        )

    return features, tracks_manager