Example #1
0
def add_gps_position(data, shot, image):
    exif = data.load_exif(image)
    reflla = data.load_reference_lla()
    if "gps" in exif and "latitude" in exif["gps"] and "longitude" in exif["gps"]:
        lat = exif["gps"]["latitude"]
        lon = exif["gps"]["longitude"]
        if data.config.get("use_altitude_tag", False):
            alt = exif["gps"].get("altitude", 2.0)
        else:
            alt = 2.0  # Arbitrary constant value that will be used to align the reconstruction
        x, y, z = geo.topocentric_from_lla(lat, lon, alt, reflla["latitude"], reflla["longitude"], reflla["altitude"])
        shot["gps_position"] = [x, y, z]
        shot["gps_dop"] = exif["gps"].get("dop", 15.0)
    else:
        shot["gps_position"] = [0.0, 0.0, 0.0]
        shot["gps_dop"] = 999999.0

    shot["orientation"] = exif.get("orientation", 1)

    if "accelerometer" in exif:
        shot["accelerometer"] = exif["accelerometer"]

    if "compass" in exif:
        shot["compass"] = exif["compass"]

    if "capture_time" in exif:
        shot["capture_time"] = exif["capture_time"]

    if "skey" in exif:
        shot["skey"] = exif["skey"]
Example #2
0
def add_gps_position(data, shot, image):
    exif = data.load_exif(image)
    reflla = data.load_reference_lla()
    if 'gps' in exif and 'latitude' in exif['gps'] and 'longitude' in exif['gps']:
        lat = exif['gps']['latitude']
        lon = exif['gps']['longitude']
        if data.config.get('use_altitude_tag', False):
            alt = exif['gps'].get('altitude', 2.0)
        else:
            alt = 2.0 # Arbitrary constant value that will be used to align the reconstruction
        x, y, z = geo.topocentric_from_lla(lat, lon, alt,
            reflla['latitude'], reflla['longitude'], reflla['altitude'])
        shot['gps_position'] = [x, y, z]
        shot['gps_dop'] = exif['gps'].get('dop', 15.0)
    else:
        shot['gps_position'] = [0.0, 0.0, 0.0]
        shot['gps_dop'] = 999999.0

    shot['orientation'] = exif.get('orientation', 1)

    if 'accelerometer' in exif:
        shot['accelerometer'] = exif['accelerometer']

    if 'compass' in exif:
        shot['compass'] = exif['compass']

    if 'capture_time' in exif:
        shot['capture_time'] = exif['capture_time']

    if 'skey' in exif:
        shot['skey'] = exif['skey']
Example #3
0
def match_candidates_by_distance(images, exifs, reference, max_neighbors,
                                 max_distance):
    """Find candidate matching pairs by GPS distance."""
    if max_neighbors <= 0 and max_distance <= 0:
        return set()
    max_neighbors = max_neighbors or 99999999
    max_distance = max_distance or 99999999.
    k = min(len(images), max_neighbors + 1)

    points = np.zeros((len(images), 3))
    for i, image in enumerate(images):
        gps = exifs[image]['gps']
        points[i] = geo.topocentric_from_lla(gps['latitude'], gps['longitude'],
                                             gps['altitude'],
                                             reference['latitude'],
                                             reference['longitude'],
                                             reference['altitude'])

    tree = spatial.cKDTree(points)

    pairs = set()
    for i, image in enumerate(images):
        distances, neighbors = tree.query(points[i],
                                          k=k,
                                          distance_upper_bound=max_distance)
        for j in neighbors:
            if i != j and j < len(images):
                pairs.add(tuple(sorted((images[i], images[j]))))
    return pairs
Example #4
0
def add_cluster_neighbors(positions, labels, centers, max_distance):
    reference = np.mean(positions, 0)

    topocentrics = []
    for position in positions:
        x, y, z = geo.topocentric_from_lla(
            position[0],
            position[1],
            0,
            reference[0],
            reference[1],
            0)

        topocentrics.append([x, y])

    topocentrics = np.array(topocentrics)
    topo_tree = spatial.cKDTree(topocentrics)

    clusters = []
    for label in np.arange(centers.shape[0]):
        cluster_indices = np.where(labels.ravel() == label)[0]

        neighbors = []
        for i in cluster_indices:
            neighbors.extend(
                topo_tree.query_ball_point(topocentrics[i], max_distance))

        cluster = list(np.union1d(cluster_indices, neighbors))
        clusters.append(cluster)

    return clusters
Example #5
0
def _read_ground_control_points_list_line(line, projection, reference_lla, exif):
    words = line.split()
    easting, northing, alt, pixel_x, pixel_y = map(float, words[:5])
    shot_id = words[5]

    # Convert 3D coordinates
    if projection is not None:
        lon, lat = projection(easting, northing, inverse=True)
    else:
        lon, lat = easting, northing
    x, y, z = geo.topocentric_from_lla(
        lat, lon, alt,
        reference_lla['latitude'],
        reference_lla['longitude'],
        reference_lla['altitude'])

    # Convert 2D coordinates
    d = exif[shot_id]
    coordinates = features.normalized_image_coordinates(
        np.array([[pixel_x, pixel_y]]), d['width'], d['height'])[0]

    o = types.GroundControlPointObservation()
    o.lla = np.array([lat, lon, alt])
    o.coordinates = np.array([x, y, z])
    o.shot_id = shot_id
    o.shot_coordinates = coordinates
    return o
Example #6
0
def get_image_metadata(data, image):
    metadata = types.ShotMetadata()
    exif = data.load_exif(image)
    reflla = data.load_reference_lla()
    if 'gps' in exif and 'latitude' in exif['gps'] and 'longitude' in exif['gps']:
        lat = exif['gps']['latitude']
        lon = exif['gps']['longitude']
        if data.config.get('use_altitude_tag', False):
            alt = exif['gps'].get('altitude', 2.0)
        else:
            alt = 2.0 # Arbitrary constant value that will be used to align the reconstruction
        x, y, z = geo.topocentric_from_lla(lat, lon, alt,
            reflla['latitude'], reflla['longitude'], reflla['altitude'])
        metadata.gps_position = [x, y, z]
        metadata.gps_dop = exif['gps'].get('dop', 15.0)
    else:
        metadata.gps_position = [0.0, 0.0, 0.0]
        metadata.gps_dop = 999999.0

    metadata.orientation = exif.get('orientation', 1)

    if 'accelerometer' in exif:
        metadata.accelerometer = exif['accelerometer']

    if 'compass' in exif:
        metadata.compass = exif['compass']

    if 'capture_time' in exif:
        metadata.capture_time = exif['capture_time']

    if 'skey' in exif:
        metadata.skey = exif['skey']

    return metadata
Example #7
0
def match_candidates_by_distance(images, exifs, reference, max_neighbors,
                                 max_distance):
    """Find candidate matching pairs by GPS distance.
    The GPS altitude is ignored because we want images of the same position
    at different altitudes to be matched together.  Otherwise, for drone
    datasets, flights at different altitudes do not get matched.
    """
    if max_neighbors <= 0 and max_distance <= 0:
        return set()
    max_neighbors = max_neighbors or 99999999
    max_distance = max_distance or 99999999.
    k = min(len(images), max_neighbors + 1)

    points = np.zeros((len(images), 3))
    for i, image in enumerate(images):
        gps = exifs[image]['gps']

        points[i] = geo.topocentric_from_lla(gps['latitude'], gps['longitude'],
                                             0, reference['latitude'],
                                             reference['longitude'], 0)

    tree = spatial.cKDTree(points)

    pairs = set()
    for i, image in enumerate(images):
        distances, neighbors = tree.query(points[i],
                                          k=k,
                                          distance_upper_bound=max_distance)
        for j in neighbors:
            if i != j and j < len(images):
                pairs.add(tuple(sorted((images[i], images[j]))))
    return pairs
Example #8
0
def add_cluster_neighbors(positions, labels, centers, max_distance):
    reference = np.mean(positions, 0)

    topocentrics = []
    for position in positions:
        x, y, z = geo.topocentric_from_lla(position[0], position[1], 0,
                                           reference[0], reference[1], 0)
        topocentrics.append([x, y])

    topocentrics = np.array(topocentrics)
    topo_tree = spatial.cKDTree(topocentrics)

    clusters = []
    for label in np.arange(centers.shape[0]):
        cluster_indices = np.where(labels == label)[0]

        neighbors = []
        for i in cluster_indices:
            neighbors.extend(
                topo_tree.query_ball_point(topocentrics[i], max_distance))

        cluster = list(np.union1d(cluster_indices, neighbors))
        clusters.append(cluster)

    return clusters
Example #9
0
def _read_ground_control_points_list_line(line, projection, reference_lla, exif):
    words = line.split()
    easting, northing, alt, pixel_x, pixel_y = map(float, words[:5])
    shot_id = words[5]

    # Convert 3D coordinates
    if projection is not None:
        lon, lat = projection(easting, northing, inverse=True)
    else:
        lon, lat = easting, northing
    x, y, z = geo.topocentric_from_lla(
        lat, lon, alt,
        reference_lla['latitude'],
        reference_lla['longitude'],
        reference_lla['altitude'])

    # Convert 2D coordinates
    d = exif[shot_id]
    coordinates = features.normalized_image_coordinates(
        np.array([[pixel_x, pixel_y]]), d['width'], d['height'])[0]

    o = types.GroundControlPointObservation()
    o.lla = np.array([lat, lon, alt])
    o.coordinates = np.array([x, y, z])
    o.shot_id = shot_id
    o.shot_coordinates = coordinates
    return o
Example #10
0
def add_gps_position(data, shot, image):
    exif = data.load_exif(image)
    reflla = data.load_reference_lla()
    if 'gps' in exif and 'latitude' in exif['gps'] and 'longitude' in exif['gps']:
        lat = exif['gps']['latitude']
        lon = exif['gps']['longitude']
        alt = 2.0 #exif['gps'].get('altitude', 0)
        x, y, z = geo.topocentric_from_lla(lat, lon, alt,
            reflla['latitude'], reflla['longitude'], reflla['altitude'])
        shot['gps_position'] = [x, y, z]
        shot['gps_dop'] = exif['gps'].get('dop', 15.0)
    else:
        shot['gps_position'] = [0.0, 0.0, 0.0]
        shot['gps_dop'] = 999999.0

    shot['orientation'] = exif.get('orientation', 1)

    if 'accelerometer' in exif:
        shot['accelerometer'] = exif['accelerometer']

    if 'compass' in exif:
        shot['compass'] = exif['compass']

    if 'capture_time' in exif:
        shot['capture_time'] = exif['capture_time']

    if 'skey' in exif:
        shot['skey'] = exif['skey']
Example #11
0
def match_candidates_by_distance(images, exifs, reference, max_neighbors, max_distance):
    """Find candidate matching pairs by GPS distance."""
    if max_neighbors <= 0 and max_distance <= 0:
        return set()
    max_neighbors = max_neighbors or 99999999
    max_distance = max_distance or 99999999.
    k = min(len(images), max_neighbors + 1)

    points = np.zeros((len(images), 3))
    for i, image in enumerate(images):
        gps = exifs[image]['gps']
        points[i] = geo.topocentric_from_lla(
            gps['latitude'], gps['longitude'], gps['altitude'],
            reference['latitude'], reference['longitude'], reference['altitude'])

    tree = spatial.cKDTree(points)

    pairs = set()
    for i, image in enumerate(images):
        distances, neighbors = tree.query(
            points[i], k=k, distance_upper_bound=max_distance)
        for j in neighbors:
            if i != j and j < len(images):
                pairs.add(tuple(sorted((images[i], images[j]))))
    return pairs
Example #12
0
def get_image_metadata(data, image):
    metadata = types.ShotMetadata()
    exif = data.load_exif(image)
    reflla = data.load_reference_lla()
    if 'gps' in exif and 'latitude' in exif['gps'] and 'longitude' in exif['gps']:
        lat = exif['gps']['latitude']
        lon = exif['gps']['longitude']
        if data.config.get('use_altitude_tag', False):
            alt = exif['gps'].get('altitude', 2.0)
        else:
            alt = 2.0 # Arbitrary constant value that will be used to align the reconstruction
        x, y, z = geo.topocentric_from_lla(lat, lon, alt,
            reflla['latitude'], reflla['longitude'], reflla['altitude'])
        metadata.gps_position = [x, y, z]
        metadata.gps_dop = exif['gps'].get('dop', 15.0)
    else:
        metadata.gps_position = [0.0, 0.0, 0.0]
        metadata.gps_dop = 999999.0

    metadata.orientation = exif.get('orientation', 1)

    if 'accelerometer' in exif:
        metadata.accelerometer = exif['accelerometer']

    if 'compass' in exif:
        metadata.compass = exif['compass']

    if 'capture_time' in exif:
        metadata.capture_time = exif['capture_time']

    if 'skey' in exif:
        metadata.skey = exif['skey']

    return metadata
Example #13
0
def add_gps_position(data, shot, image):
    exif = data.load_exif(image)
    reflla = data.load_reference_lla()
    if 'gps' in exif and 'latitude' in exif['gps'] and 'longitude' in exif[
            'gps']:
        lat = exif['gps']['latitude']
        lon = exif['gps']['longitude']
        if data.config.get('use_altitude_tag', False):
            alt = exif['gps'].get('altitude', 2.0)
        else:
            alt = 2.0  # Arbitrary constant value that will be used to align the reconstruction
        x, y, z = geo.topocentric_from_lla(lat, lon, alt, reflla['latitude'],
                                           reflla['longitude'],
                                           reflla['altitude'])
        shot['gps_position'] = [x, y, z]
        shot['gps_dop'] = exif['gps'].get('dop', 15.0)
    else:
        shot['gps_position'] = [0.0, 0.0, 0.0]
        shot['gps_dop'] = 999999.0

    shot['orientation'] = exif.get('orientation', 1)

    if 'accelerometer' in exif:
        shot['accelerometer'] = exif['accelerometer']

    if 'compass' in exif:
        shot['compass'] = exif['compass']

    if 'capture_time' in exif:
        shot['capture_time'] = exif['capture_time']

    if 'skey' in exif:
        shot['skey'] = exif['skey']
Example #14
0
def test_ecef_lla_topocentric_consistency() -> None:
    lla_ref = [46.5, 6.5, 400]
    lla_before = [46.5274109, 6.5722075, 402.16]
    enu = geo.topocentric_from_lla(lla_before[0], lla_before[1], lla_before[2],
                                   lla_ref[0], lla_ref[1], lla_ref[2])
    lla_after = geo.lla_from_topocentric(enu[0], enu[1], enu[2], lla_ref[0],
                                         lla_ref[1], lla_ref[2])
    assert np.allclose(lla_after, lla_before)
Example #15
0
def _load_topocentric_gps_points():
    topocentric_gps_points_dict = {}

    with open("gps_list.txt") as fin:
        gps_points_dict = io.read_gps_points_list(fin)

    with io.open_rt("reference_lla.json") as fin:
        reflla = io.json_load(fin)

    for key, value in gps_points_dict.items():
        x, y, z = geo.topocentric_from_lla(
            value[0], value[1], value[2],
            reflla['latitude'], reflla['longitude'], reflla['altitude'])
        topocentric_gps_points_dict[key] = (x, y, z)

    return topocentric_gps_points_dict
Example #16
0
def test_ecef_lla_topocentric_consistency():
    lla_ref = [46.5, 6.5, 400]
    lla_before = [46.5274109, 6.5722075, 402.16]
    enu = geo.topocentric_from_lla(lla_before[0],
                                   lla_before[1],
                                   lla_before[2],
                                   lla_ref[0],
                                   lla_ref[1],
                                   lla_ref[2])
    lla_after = geo.lla_from_topocentric(enu[0],
                                         enu[1],
                                         enu[2],
                                         lla_ref[0],
                                         lla_ref[1],
                                         lla_ref[2])
    assert np.allclose(lla_after, lla_before)
Example #17
0
def add_gps_position(data, reconstruction, image):
    exif = data.load_exif(image)
    reflla = data.load_reference_lla()
    if 'gps' in exif:
        lat = exif['gps']['latitude']
        lon = exif['gps']['longitude']
        alt = 2.0  #exif['gps'].get('altitude', 0)
        x, y, z = geo.topocentric_from_lla(lat, lon, alt, *reflla)
        reconstruction['shots'][image]['gps_position'] = [x, y, z]
        reconstruction['shots'][image]['gps_dop'] = exif['gps'].get(
            'dop', 15.0)
    else:
        reconstruction['shots'][image]['gps_position'] = [0.0, 0.0, 0.0]
        reconstruction['shots'][image]['gps_dop'] = 999999.0

    reconstruction['shots'][image]['exif_orientation'] = exif.get(
        'orientation', 1)
Example #18
0
def _read_ground_control_points_list_line(line, reference_lla, exif):
    words = line.split()
    lat, lon, alt, pixel_x, pixel_y = map(float, words[:5])
    shot_id = words[5]
    x, y, z = geo.topocentric_from_lla(
        lat, lon, alt,
        reference_lla['latitude'],
        reference_lla['longitude'],
        reference_lla['altitude'])
    d = exif[shot_id]

    o = types.GroundControlPointObservation()
    o.lla = np.array([lat, lon, alt])
    o.coordinates = np.array([x, y, z])
    o.shot_id = shot_id
    o.shot_coordinates = features.normalized_image_coordinates(
        np.array([[pixel_x, pixel_y]]), d['width'], d['height'])[0]
    return o
Example #19
0
def add_gps_position(data, reconstruction, image):
    exif = data.load_exif(image)
    reflla = data.load_reference_lla()
    if 'gps' in exif and 'latitude' in exif['gps'] and 'longitude' in exif['gps']:
        lat = exif['gps']['latitude']
        lon = exif['gps']['longitude']
        alt = 2.0 #exif['gps'].get('altitude', 0)
        x, y, z = geo.topocentric_from_lla(lat, lon, alt, *reflla)
        reconstruction['shots'][image]['gps_position'] = [x, y, z]
        reconstruction['shots'][image]['gps_dop'] = exif['gps'].get('dop', 15.0)
    else:
        reconstruction['shots'][image]['gps_position'] = [0.0, 0.0, 0.0]
        reconstruction['shots'][image]['gps_dop'] = 999999.0

    reconstruction['shots'][image]['exif_orientation'] = exif.get('orientation', 1)

    if 'accelerometer' in exif:
        reconstruction['shots'][image]['accelerometer'] = exif['accelerometer']

    if 'compass' in exif:
        reconstruction['shots'][image]['compass'] = exif['compass']