Example #1
0
def two_view_reconstruction(p1, p2, camera1, camera2, threshold):
    """Reconstruct two views using the 5-point method.

    Args:
        p1, p2: lists points in the images
        camera1, camera2: Camera models
        threshold: reprojection error threshold

    Returns:
        rotation, translation and inlier list
    """
    b1 = camera1.pixel_bearing_many(p1)
    b2 = camera2.pixel_bearing_many(p2)

    # Note on threshold:
    # See opengv doc on thresholds here:
    #   http://laurentkneip.github.io/opengv/page_how_to_use.html
    # Here we arbitrarily assume that the threshold is given for a camera of
    # focal length 1.  Also, arctan(threshold) \approx threshold since
    # threshold is small
    T = multiview.relative_pose_ransac(
        b1, b2, b"STEWENIUS", 1 - np.cos(threshold), 1000, 0.999)
    R = T[:, :3]
    t = T[:, 3]
    inliers = _two_view_reconstruction_inliers(b1, b2, R, t, threshold)

    if inliers.sum() > 5:
        T = multiview.relative_pose_optimize_nonlinear(b1[inliers],
                                                       b2[inliers], t, R)
        R = T[:, :3]
        t = T[:, 3]
        inliers = _two_view_reconstruction_inliers(b1, b2, R, t, threshold)

    return cv2.Rodrigues(R.T)[0].ravel(), -R.T.dot(t), inliers
Example #2
0
def robust_match_calibrated(p1, p2, camera1, camera2, matches, config):
    """Filter matches by estimating the Essential matrix via RANSAC."""

    if len(matches) < 8:
        return np.array([])

    p1 = p1[matches[:, 0]][:, :2].copy()
    p2 = p2[matches[:, 1]][:, :2].copy()
    b1 = camera1.pixel_bearing_many(p1)
    b2 = camera2.pixel_bearing_many(p2)

    threshold = config['robust_matching_calib_threshold']
    T = multiview.relative_pose_ransac(b1, b2, b"STEWENIUS",
                                       1 - np.cos(threshold), 1000, 0.999)

    for relax in [4, 2, 1]:
        inliers = _compute_inliers_bearings(b1, b2, T, relax * threshold)
        if np.sum(inliers) < 8:
            return np.array([])
        iterations = config['five_point_refine_match_iterations']
        T = multiview.relative_pose_optimize_nonlinear(b1[inliers],
                                                       b2[inliers],
                                                       b"STEWENIUS", T[:3, 3],
                                                       T[:3, :3], iterations)

    inliers = _compute_inliers_bearings(b1, b2, T, threshold)

    return matches[inliers]
Example #3
0
def two_view_reconstruction(
    p1: np.ndarray,
    p2: np.ndarray,
    camera1: pygeometry.Camera,
    camera2: pygeometry.Camera,
    threshold: float,
    iterations: int,
) -> Tuple[np.ndarray, np.ndarray, List[int]]:
    """Reconstruct two views using the 5-point method.

    Args:
        p1, p2: lists points in the images
        camera1, camera2: Camera models
        threshold: reprojection error threshold

    Returns:
        rotation, translation and inlier list
    """
    b1 = camera1.pixel_bearing_many(p1)
    b2 = camera2.pixel_bearing_many(p2)

    T = multiview.relative_pose_ransac(b1, b2, threshold, 1000, 0.999)
    R = T[:, :3]
    t = T[:, 3]
    inliers = _two_view_reconstruction_inliers(b1, b2, R, t, threshold)

    if len(inliers) > 5:
        T = multiview.relative_pose_optimize_nonlinear(b1[inliers],
                                                       b2[inliers], t, R,
                                                       iterations)
        R = T[:, :3]
        t = T[:, 3]
        inliers = _two_view_reconstruction_inliers(b1, b2, R, t, threshold)

    return cv2.Rodrigues(R.T)[0].ravel(), -R.T.dot(t), inliers
Example #4
0
def robust_match_calibrated(
    p1: np.ndarray,
    p2: np.ndarray,
    camera1: pygeometry.Camera,
    camera2: pygeometry.Camera,
    matches: np.ndarray,
    config: Dict[str, Any],
) -> np.ndarray:
    """Filter matches by estimating the Essential matrix via RANSAC."""

    if len(matches) < 8:
        return np.array([])

    p1 = p1[matches[:, 0]][:, :2].copy()
    p2 = p2[matches[:, 1]][:, :2].copy()
    b1 = camera1.pixel_bearing_many(p1)
    b2 = camera2.pixel_bearing_many(p2)

    threshold = config["robust_matching_calib_threshold"]
    T = multiview.relative_pose_ransac(b1, b2, threshold, 1000, 0.999)

    for relax in [4, 2, 1]:
        inliers = compute_inliers_bearings(b1, b2, T[:, :3], T[:, 3],
                                           relax * threshold)
        if np.sum(inliers) < 8:
            return np.array([])
        iterations = config["five_point_refine_match_iterations"]
        T = multiview.relative_pose_optimize_nonlinear(b1[inliers],
                                                       b2[inliers], T[:3, 3],
                                                       T[:3, :3], iterations)

    inliers = compute_inliers_bearings(b1, b2, T[:, :3], T[:, 3], threshold)

    return matches[inliers]
Example #5
0
def robust_match_calibrated(p1, p2, camera1, camera2, matches, config):
    """Filter matches by estimating the Essential matrix via RANSAC."""

    if len(matches) < 8:
        return np.array([])

    p1 = p1[matches[:, 0]][:, :2].copy()
    p2 = p2[matches[:, 1]][:, :2].copy()
    b1 = camera1.pixel_bearing_many(p1)
    b2 = camera2.pixel_bearing_many(p2)

    threshold = config['robust_matching_calib_threshold']
    T = multiview.relative_pose_ransac(
        b1, b2, b"STEWENIUS", 1 - np.cos(threshold), 1000, 0.999)

    for relax in [4, 2, 1]:
        inliers = _compute_inliers_bearings(b1, b2, T, relax * threshold)
        if sum(inliers) < 8:
            return np.array([])
        T = pyopengv.relative_pose_optimize_nonlinear(
            b1[inliers], b2[inliers], T[:3, 3], T[:3, :3])

    inliers = _compute_inliers_bearings(b1, b2, T, threshold)

    return matches[inliers]
Example #6
0
def relative_pose_opengv(r_kp1, nn_r_kp2, intrinsics1, intrinsics2, px_thresh):
    camera1 = intrinsics2camera(intrinsics1)
    camera2 = intrinsics2camera(intrinsics2)

    bearing_vectors1 = camera1.pixel_bearing_many(r_kp1)
    bearing_vectors2 = camera2.pixel_bearing_many(nn_r_kp2)

    # Convert pixel threshold to angular
    avg_focal_length = (camera1.focal_x + camera1.focal_y + camera2.focal_x +
                        camera2.focal_y) / 4
    angle_thresh = np.arctan2(px_thresh, avg_focal_length)

    T = multiview.relative_pose_ransac(bearing_vectors1, bearing_vectors2,
                                       b"STEWENIUS", 1 - np.cos(angle_thresh),
                                       5000, 0.99999)
    inliers = _compute_inliers_bearings(bearing_vectors1, bearing_vectors2, T,
                                        angle_thresh)

    T = multiview.relative_pose_optimize_nonlinear(bearing_vectors1[inliers],
                                                   bearing_vectors2[inliers],
                                                   T[:3, 3], T[:3, :3])
    inliers = _compute_inliers_bearings(bearing_vectors1, bearing_vectors2, T,
                                        angle_thresh)

    return T, inliers
Example #7
0
def robust_match_calibrated(p1, p2, camera1, camera2, matches, config):
    """Filter matches by estimating the Essential matrix via RANSAC."""

    if len(matches) < 8:
        return np.array([])

    p1 = p1[matches[:, 0]][:, :2].copy()
    p2 = p2[matches[:, 1]][:, :2].copy()
    b1 = camera1.pixel_bearing_many(p1)
    b2 = camera2.pixel_bearing_many(p2)

    threshold = config['robust_matching_calib_threshold']
    T = multiview.relative_pose_ransac(b1, b2, "STEWENIUS",
                                       1 - np.cos(threshold), 1000, 0.999)

    inliers = _compute_inliers_bearings(b1, b2, T, threshold)

    return matches[inliers]