def export(self, reconstruction, graph, data): exporter = csfm.OpenMVSExporter() for camera in reconstruction.cameras.values(): if camera.projection_type == 'perspective': w, h = camera.width, camera.height K = np.array([ [camera.focal, 0, (w - 1.0) / 2 / max(w, h)], [0, camera.focal, (h - 1.0) / 2 / max(w, h)], [0, 0, 1], ]) exporter.add_camera(str(camera.id), K) for shot in reconstruction.shots.values(): if shot.camera.projection_type == 'perspective': image_path = data._undistorted_image_file(shot.id) exporter.add_shot(str(os.path.abspath(image_path)), str(shot.id), str(shot.camera.id), shot.pose.get_rotation_matrix(), shot.pose.get_origin()) for point in reconstruction.points.values(): shots = graph[point.id].keys() coordinates = np.array(point.coordinates, dtype=np.float64) exporter.add_point(coordinates, shots) opensfm_io.mkdir_p(data.data_path + '/openmvs') exporter.export(data.data_path + '/openmvs/scene.mvs')
def import_video_with_gpx(video_file, gpx_file, output_path, dx, dt=None, start_time=None, visual=False, image_description=None): points = geotag_from_gpx.get_lat_lon_time(gpx_file) orientation = video_orientation(video_file) if start_time: video_start_time = dateutil.parser.parse(start_time) else: try: exifdate = Popen(['exiftool', '-CreateDate', '-b', video_file], stdout=PIPE).stdout.read() video_start_time = datetime.datetime.strptime(exifdate,'%Y:%m:%d %H:%M:%S') except: print 'Video recording timestamp not found. Using first GPS point time.' video_start_time = points[0][0] try: duration = Popen(['exiftool', '-MediaDuration', '-b', video_file], stdout=PIPE).stdout.read() video_duration = float(duration) video_end_time = video_start_time + datetime.timedelta(seconds=video_duration) except: print 'Video end time not found. Using last GPS point time.' video_end_time = points[-1][0] print 'GPS track starts at:', points[0][0] print 'Video starts at:', video_start_time # Extract video frames. opensfm_io.mkdir_p(output_path) key_points = geotag_from_gpx.sample_gpx(points, dx, dt) cap = cv2.VideoCapture(video_file) image_files = [] for p in key_points: dt = (p[0] - video_start_time).total_seconds() if dt > 0: CAP_PROP_POS_MSEC = cv2.CAP_PROP_POS_MSEC if context.OPENCV3 else cv2.cv.CV_CAP_PROP_POS_MSEC cap.set(CAP_PROP_POS_MSEC, int(dt * 1000)) ret, frame = cap.read() if ret: print 'Grabbing frame for time', p[0] filepath = os.path.join(output_path, p[0].strftime("%Y_%m_%d_%H_%M_%S_%f")[:-3] + '.jpg') cv2.imwrite(filepath, frame) geotag_from_gpx.add_exif_using_timestamp(filepath, points, timestamp=p[0], orientation=orientation) # Display the resulting frame if visual: # Display the resulting frame max_display_size = 800 resize_ratio = float(max_display_size) / max(frame.shape[0], frame.shape[1]) frame = cv2.resize(frame, dsize=(0, 0), fx=resize_ratio, fy=resize_ratio) cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == 27: break image_files.append(filepath) # When everything done, release the capture cap.release() if visual: cv2.destroyAllWindows() return image_files
def __save_features(self, filepath, image, points, descriptors, colors=None): opensfm_io.mkdir_p(self.__feature_path()) feature_type = self.config.get('feature_type') if ((feature_type == 'AKAZE' and self.config.get('akaze_descriptor') in ['MLDB_UPRIGHT', 'MLDB']) or (feature_type == 'HAHOG' and self.config.get('hahog_normalize_to_uchar', False))): feature_data_type = np.uint8 else: feature_data_type = np.float32 np.savez_compressed(filepath, points=points.astype(np.float32), descriptors=descriptors.astype(feature_data_type), colors=colors)
def save_raw_depthmap(self, image, depth, plane, score): opensfm_io.mkdir_p(self._depthmap_path()) filepath = self._depthmap_file(image, 'raw.npz') np.savez_compressed(filepath, depth=depth, plane=plane, score=score)
def save_undistorted_image(self, image, array): opensfm_io.mkdir_p(self._undistorted_image_path()) cv2.imwrite(self._undistorted_image_file(image), array[:, :, ::-1])
def save_matches(self, image, matches): opensfm_io.mkdir_p(self.__matches_path()) with gzip.open(self.__matches_file(image), 'wb') as fout: pickle.dump(matches, fout)
def save_exif(self, image, data): opensfm_io.mkdir_p(self.__exif_path()) with open(self.__exif_file(image), 'w') as fout: opensfm_io.json_dump(data, fout)