def test_parameters_iso():

    scale = []
    amplitude = 1.0
    extraParameter = []

    # model 1
    atom_ex = ot.IsotropicCovarianceModel(ot.MaternModel(), 2)
    atom_ex.setScale([5])
    atom_ex.setAmplitude([1.5])
    scale.append(5)
    amplitude *= 1.5
    extraParameter.append(atom_ex.getKernel().getFullParameter()[-1])

    # model2
    m = ot.MaternModel()
    m.setNu(2.5)
    m.setScale([3])
    m.setAmplitude([3])
    scale.append(3)
    amplitude *= 3
    extraParameter.append(m.getNu())

    # model 3
    atom = ot.IsotropicCovarianceModel(ot.AbsoluteExponential(), 2)
    atom.setScale([2])
    atom.setAmplitude([2.5])
    scale.append(2)
    amplitude *= 2.5

    model = ot.ProductCovarianceModel([atom_ex, m, atom])

    ott.assert_almost_equal(model.getScale(), scale, 1e-16, 1e-16)
    ott.assert_almost_equal(model.getAmplitude(), [amplitude], 1e-16, 1e-16)
    ott.assert_almost_equal(model.getFullParameter(),
                            scale + [amplitude] + extraParameter, 1e-16, 1e-16)

    # active parameter should be scale + amplitude
    ott.assert_almost_equal(model.getActiveParameter(),
                            [0, 1, 2, 3], 1e-16, 1e-16)

    # setting new parameters
    extraParameter = [2.5, 0.5]
    model.setFullParameter([6, 7, 8, 2] + extraParameter)

    ott.assert_almost_equal(model.getCollection()[
                            0].getScale()[0], 6, 1e-16, 1e-16)
    ott.assert_almost_equal(model.getCollection()[
                            1].getScale()[0], 7, 1e-16, 1e-16)
    ott.assert_almost_equal(model.getCollection()[
                            2].getScale()[0], 8, 1e-16, 1e-16)
    ott.assert_almost_equal(model.getAmplitude()[0], 2, 1e-16, 1e-16)
    ott.assert_almost_equal(model.getCollection(
    )[0].getFullParameter()[-1], extraParameter[0], 1e-16, 1e-16)
    ott.assert_almost_equal(model.getCollection(
    )[1].getFullParameter()[-1], extraParameter[1], 1e-16, 1e-16)

    # checking active par setting
    model.setActiveParameter([0, 1, 2, 3, 5])
    ott.assert_almost_equal(model.getParameter(), [
                            6, 7, 8, 2, extraParameter[-1]], 1e-16, 1e-16)
Example #2
0
    ot.GeneralizedExponential()
]
coll += [
    ot.MaternModel(),
    ot.SphericalModel(),
    ot.ExponentiallyDampedCosineModel()
]
for model in coll:
    test_scalar_model(model)

# 13) Isotropic covariance model

scale = 3.5
amplitude = 1.5
myOneDimensionalKernel = ot.SquaredExponential([scale], [amplitude])
myIsotropicKernel = ot.IsotropicCovarianceModel(myOneDimensionalKernel,
                                                inputDimension)

# Test consistency of isotropic model with underlying 1D kernel
ott.assert_almost_equal(myIsotropicKernel.getAmplitude()[0], amplitude, 1e-12,
                        0.0)
ott.assert_almost_equal(myIsotropicKernel.getScale()[0], scale, 1e-12, 0.0)
ott.assert_almost_equal(myIsotropicKernel.getKernel().getAmplitude()[0],
                        amplitude, 1e-12, 0.0)
ott.assert_almost_equal(myIsotropicKernel.getKernel().getScale()[0], scale,
                        1e-12, 0.0)

# Standard tests applied
test_model(myIsotropicKernel)

# Test consistency of isotropic kernel's discretization
inputVector = ot.Point([0.3, 1.7])
Example #3
0
import openturns.testing as ott

ot.TESTPREAMBLE()


def fitKriging(covarianceModel):
    '''
    Fit the parameters of a kriging metamodel. 
    '''
    coordinates = ot.Sample([[1.0,1.0],[5.0,1.0],[9.0,1.0], \
                         [1.0,3.5],[5.0,3.5],[9.0,3.5], \
                         [1.0,6.0],[5.0,6.0],[9.0,6.0]])
    observations = ot.Sample([[25.0], [25.0], [10.0], [20.0], [25.0], [20.0],
                              [15.0], [25.0], [25.0]])
    basis = ot.ConstantBasisFactory(2).build()
    algo = ot.KrigingAlgorithm(coordinates, observations, covarianceModel,
                               basis)
    algo.run()
    krigingResult = algo.getResult()
    return krigingResult


# Isotropic covariance model
myIsotropicKernel = ot.IsotropicCovarianceModel(ot.SquaredExponential(), 2)
krigingFittedCovarianceModel = fitKriging(
    myIsotropicKernel).getCovarianceModel()
ott.assert_almost_equal(krigingFittedCovarianceModel.getScale()[0], 2.86427,
                        0.0, 1e-4)
ott.assert_almost_equal(krigingFittedCovarianceModel.getAmplitude()[0],
                        6.65231, 0.0, 1e-4)
Example #4
0
# The value of :math:`\hat{\theta}_1` is actually equal to the lower bound:

print(lower)

# %%
# This means that temperatures are likely to vary a lot along the X axis
# and much slower accross the Y axis based on the observation data.

# %%
# Predict with an isotropic covariance kernel
# ---------------------------------------------------
# If we know that variations of the temperature are isotropic
# (i.e. with no priviledged direction),
# we can embed this information within the covariance kernel.

isotropic = ot.IsotropicCovarianceModel(ot.SquaredExponential(),
                                        inputDimension)

# %%
# The :class:`~openturns.IsotropicCovarianceModel` class creates an isotropic
# version with a given input dimension of a :class:`~openturns.CovarianceModel`.
# Because is is isotropic, it only needs one scale parameter :math:`\theta_{iso}`
# and it will make sure :math:`\theta_1 = \theta_2 = \theta_{iso}` at all times
# during the optimization.

krigingResult, krigingMetamodel = fitKriging(coordinates, observations,
                                             isotropic, basis)
print(krigingResult.getCovarianceModel().getScale())

# %%
# Prediction with the isotropic covariance kernel is much more satisfactory.
Example #5
0
    ot.GeneralizedExponential()
]
coll += [
    ot.MaternModel(),
    ot.SphericalModel(),
    ot.ExponentiallyDampedCosineModel()
]
for model in coll:
    test_scalar_model(model)

# 13) Isotropic covariance model

scale = 3.5
amplitude = 1.5
myOneDimensionalKernel = ot.SquaredExponential([scale], [amplitude])
myIsotropicKernel = ot.IsotropicCovarianceModel(myOneDimensionalKernel,
                                                inputDimension)

# Test consistency of isotropic model with underlying 1D kernel
ott.assert_almost_equal(myIsotropicKernel.getAmplitude()[0], amplitude, 1e-12,
                        0.0)
ott.assert_almost_equal(myIsotropicKernel.getScale()[0], scale, 1e-12, 0.0)
ott.assert_almost_equal(myIsotropicKernel.getKernel().getAmplitude()[0],
                        amplitude, 1e-12, 0.0)
ott.assert_almost_equal(myIsotropicKernel.getKernel().getScale()[0], scale,
                        1e-12, 0.0)

# Standard tests applied
test_model(myIsotropicKernel)

# Test consistency of isotropic kernel's discretization
inputVector = ot.Point([0.3, 1.7])