from matplotlib import pyplot as plt
from openturns.viewer import View

# Create the time grid
# In the context of the spectral estimate or Fourier transform use,
# we use data blocs with size of form 2^p
tMin = 0.
timeStep = 0.1
size = pow(2, 12)
myTimeGrid = ot.RegularGrid(tMin, timeStep, size)

# We fix the parameter of the Cauchy model
amplitude = [5]
scale = [3]
model = ot.CauchyModel(scale, amplitude)
gp = ot.SpectralGaussianProcess(model, myTimeGrid)

# Get a time series or a sample of time series
# myTimeSeries = gp.getRealization()
mySample = gp.getSample(1000)

mySegmentNumber = 10
myOverlapSize = 0.3

# Build a spectral model factory
myFactory = ot.WelchFactory(ot.Hanning(), mySegmentNumber, myOverlapSize)

# Estimation on a TimeSeries or on a ProcessSample
# myEstimatedModel_TS = myFactory.build(myTimeSeries)
myEstimatedModel_PS = myFactory.buildAsUserDefinedSpectralModel(mySample)
Example #2
0
# %%
# generate some data

# Create the time grid
# In the context of the spectral estimate or Fourier transform use,
# we use data blocs with size of form 2^p
tMin = 0.
tstep = 0.1
size = 2**12
tgrid = ot.RegularGrid(tMin, tstep, size)

# We fix the parameter of the Cauchy model
amplitude = [5.0]
scale = [3.0]
model = ot.CauchyModel(amplitude, scale)
process = ot.SpectralGaussianProcess(model, tgrid)

# Get a time series or a sample of time series
tseries = process.getRealization()
sample = process.getSample(1000)

# %%
# Build a spectral model factory
segmentNumber = 10
overlapSize = 0.3
factory = ot.WelchFactory(ot.Hann(), segmentNumber, overlapSize)

# %%
# Estimation on a TimeSeries or on a ProcessSample
estimatedModel_TS = factory.build(tseries)
estimatedModel_PS = factory.build(sample)
Example #3
0
from matplotlib import pyplot as plt
from openturns.viewer import View

# Create the time grid
# In the context of the spectral estimate or Fourier transform use,
# we use data blocs with size of form 2^p
tMin = 0.
timeStep = 0.1
size = pow(2, 12)
myTimeGrid = ot.RegularGrid(tMin, timeStep, size)

# We fix the parameter of the Cauchy model
amplitude = [5]
scale = [3]
model = ot.ExponentialCauchy(scale, amplitude)
myNormalProcess = ot.SpectralGaussianProcess(model, myTimeGrid)

# Get a time series or a sample of time series
# myTimeSeries = myNormalProcess.getRealization()
mySample = myNormalProcess.getSample(1000)

mySegmentNumber = 10
myOverlapSize = 0.3

# Build a spectral model factory
myFactory = ot.WelchFactory(ot.Hanning(), mySegmentNumber, myOverlapSize)

# Estimation on a TimeSeries or on a ProcessSample
# myEstimatedModel_TS = myFactory.build(myTimeSeries)
myEstimatedModel_PS = myFactory.buildAsUserDefinedSpectralModel(mySample)
Example #4
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.SpectralGaussianProcess().__class__.__name__ == 'Process':
    # default to Gaussian for the interface class
    process = ot.GaussianProcess()
elif ot.SpectralGaussianProcess().__class__.__name__ == 'DiscreteMarkovChain':
    process = ot.SpectralGaussianProcess()
    process.setTransitionMatrix(
        ot.SquareMatrix([[0.0, 0.5, 0.5], [0.7, 0.0, 0.3], [0.8, 0.0, 0.2]]))
    origin = 0
    process.setOrigin(origin)
else:
    process = ot.SpectralGaussianProcess()
process.setTimeGrid(ot.RegularGrid(0.0, 0.02, 50))
process.setDescription(['$x$'])
sample = process.getSample(6)
sample_graph = sample.drawMarginal(0)
sample_graph.setTitle(str(process))

fig = plt.figure(figsize=(10, 4))
sample_axis = fig.add_subplot(111)
View(sample_graph, figure=fig, axes=[sample_axis], add_legend=False)
Example #5
0
# In this paragraph we build a gaussian process from its spectral density.
#

# %%
# We first define a spectral model :
amplitude = [1.0, 2.0]
scale = [4.0, 5.0]
spatialCorrelation = ot.CorrelationMatrix(2)
spatialCorrelation[0, 1] = 0.8
mySpectralModel = ot.CauchyModel(scale, amplitude, spatialCorrelation)

# %%
# As usual we define a mesh,
myTimeGrid = ot.RegularGrid(0.0, 0.1, 20)

# %%
# and create the process thereafter
process = ot.SpectralGaussianProcess(mySpectralModel, myTimeGrid)
print(process)

# %%
# Eventually we draw the first marginal of a sample of size 6 :
sample = process.getSample(6)
graph = sample.drawMarginal(0)
graph.setTitle("First marginal of six realizations of the process")
view = viewer.View(graph)

# %%
# Display figures
plt.show()
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
process = ot.SpectralGaussianProcess()
process.setTimeGrid(ot.RegularGrid(0.0, 0.02, 50))
process.setDescription(['$x$'])
sample = process.getSample(6)
sample_graph = sample.drawMarginal(0)
fig = plt.figure(figsize=(10, 4))
plt.suptitle(str(process))
sample_axis = fig.add_subplot(111)
View(sample_graph, figure=fig, axes=[sample_axis], add_legend=False)