def replace_interpolate_pattern(graph: Graph, match: dict):
    split = match['split']
    scale = float32_array([get_split_scale(split)])
    axis = int(split.in_port(1).get_connection().get_source().node.value)
    split_node_name = split.name
    axis_node = Const(graph, {'name': split_node_name + '/axis', 'value': int64_array([axis])}).create_node()

    shape_node = Shape(graph, dict(name=split_node_name + '/Shape')).create_node()
    scales_node = Const(graph, dict(name=split_node_name + '/scales', value=scale)).create_node()
    mul_node = Mul(graph, dict(name=split_node_name + '/Mul')).create_node()
    scales_node.out_port(0).connect(mul_node.in_port(1))

    strided_slice_node = create_op_with_const_inputs(graph,
                                                     StridedSlice,
                                                     {1: int64_array([axis]), 2: int64_array([axis + 1])},
                                                     {
                                                        'name': split_node_name + '/StridedSlice',
                                                        'begin_mask': int64_array([1]),
                                                        'end_mask': int64_array([1]),
                                                        'new_axis_mask': int64_array([0]),
                                                        'shrink_axis_mask': int64_array([0]),
                                                        'ellipsis_mask': int64_array([0])
                                                     })
    shape_node.out_port(0).connect(strided_slice_node.in_port(0))

    cast_shape_to_float = Cast(graph, {'dst_type': np.float32}).create_node()

    strided_slice_node.out_port(0).connect(cast_shape_to_float.in_port(0))
    cast_shape_to_float.out_port(0).connect(mul_node.in_port(0))

    interp_node = Interpolate(graph,
                              dict(name=split_node_name + '/Interpolate',
                                   mode='nearest',
                                   antialias=0, pads_begin=int64_array([0]), pads_end=int64_array([0]),
                                   coordinate_transformation_mode='half_pixel', nearest_mode='round_prefer_floor',
                                   cube_coeff=-0.75, version='opset4', shape_calculation_mode='scales',
                                   in_ports_count=4, maybe_part_of_sequence=True)).create_node()

    floor_node = Floor(graph, {'name': split_node_name + '/Floor'}).create_node()
    cast_mul_result_to_int = Cast(graph, {'dst_type': np.int64}).create_node()

    mul_node.out_port(0).connect(floor_node.in_port(0))
    floor_node.out_port(0).connect(cast_mul_result_to_int.in_port(0))

    cast_mul_result_to_int.out_port(0).connect(interp_node.in_port(1))
    scales_node.out_port(0).connect(interp_node.in_port(2))
    axis_node.out_port(0).connect(interp_node.in_port(3))

    match['concat'].out_port(0).get_connection().set_source(interp_node.out_port(0))

    split_connection = split.in_port(0).get_connection()
    split_connection.set_destination(interp_node.in_port(0))
    split_connection.get_source().connect(shape_node.in_port(0))
Example #2
0
    def replace_pattern(self, graph: Graph, match: Dict[str, Node]):
        log.debug('UpsampleToResample is triggered')
        upsample = match['upsample']
        upsample_name = upsample.soft_get('name', upsample.id)
        input_shape = upsample.in_port(0).data.get_shape()
        input_shape_rank = len(input_shape)
        if input_shape_rank not in [4, 5]:
            log.warning('The input shape is not 4D or 5D for op {}'.format(
                upsample.soft_get('name')))
            return

        depth_scale = None
        layout = graph.graph['layout']

        if len(upsample.in_nodes()) == 2:
            if upsample.in_node(1).value is None:
                return
            scales = upsample.in_node(1).value
            assert len(scales) in (
                4, 5
            ), 'Supported scales rank is 4 or 5, but it is {} for node {}'.format(
                len(scales), upsample_name)
            if not (math.isclose(scales[0], 1, rel_tol=1e-5)
                    and math.isclose(scales[1], 1, rel_tol=1e-5)):
                return
            height_scale = scales[get_height_dim(layout, input_shape_rank)]
            width_scale = scales[get_width_dim(layout, input_shape_rank)]
            if len(scales) == 5:
                depth_scale = scales[get_depth_dim(layout, input_shape_rank)]
        else:
            height_scale = upsample['height_scale']
            width_scale = upsample['width_scale']

        if 1 in upsample.in_ports() and not upsample.in_port(1).disconnected():
            upsample.in_port(1).disconnect()

        upsample_name = upsample.soft_get('name', upsample.id)
        shape = Shape(graph, {'name': upsample_name + '/0_port'}).create_node()

        layout = graph.graph['layout']

        if input_shape_rank == 4:
            begin_value = int64_array(
                [get_height_dim(layout, input_shape_rank)])
            factor_value = float32_array([height_scale, width_scale])
        else:
            begin_value = int64_array(
                [get_depth_dim(layout, input_shape_rank)])
            factor_value = float32_array(
                [depth_scale, height_scale, width_scale])

        ss = create_op_with_const_inputs(
            graph, StridedSlice, {
                1: begin_value,
                2: int64_array([get_width_dim(layout, input_shape_rank) + 1]),
                3: int64_array([1])
            }, {
                'name': upsample_name + '/ss_0_port',
                'begin_mask': int64_array([1]),
                'end_mask': int64_array([1]),
                'new_axis_mask': int64_array([0]),
                'shrink_axis_mask': int64_array([0]),
                'ellipsis_mask': int64_array([0])
            })

        mul = create_op_node_with_second_input(
            graph, Mul, factor_value, {'name': upsample_name + '/factor_mul'})

        source = upsample.in_port(0).get_connection().get_source()
        source.connect(shape.in_port(0))
        shape.out_port(0).connect(ss.in_port(0))

        ss.out_port(0).connect(mul.in_port(0))

        # Create Interpolate operation
        if input_shape_rank == 4:
            axes = int64_array([
                get_height_dim(layout, input_shape_rank),
                get_width_dim(layout, input_shape_rank)
            ])
        else:
            axes = int64_array([
                get_depth_dim(layout, input_shape_rank),
                get_height_dim(layout, input_shape_rank),
                get_width_dim(layout, input_shape_rank)
            ])

        axes_node = Const(graph, {
            'name': upsample_name + '/axis',
            'value': axes
        }).create_node()

        interpolate = Interpolate(
            graph, {
                'mode': upsample.attrs()['mode'],
                'antialias': 0,
                'pads_begin': int64_array([0]),
                'pads_end': int64_array([0]),
                'coordinate_transformation_mode': 'half_pixel',
                'nearest_mode': 'round_prefer_floor',
                'cube_coeff': -0.75,
                'shape_calculation_mode': 'scales',
                'version': 'opset4',
                'in_ports_count': 4
            }).create_node()

        upsample.add_input_port(1, skip_if_exist=True)
        assert upsample.in_port(1).disconnected()
        mul.out_port(0).connect(interpolate.in_port(1))
        axes_node.out_port(0).connect(interpolate.in_port(3))

        scales_node = Const(graph, {
            'name': upsample_name + '/scales',
            'value': factor_value
        }).create_node()
        scales_node.out_port(0).connect(interpolate.in_port(2))

        upsample.in_port(0).get_connection().set_destination(
            interpolate.in_port(0))
        upsample.out_port(0).get_connection().set_source(
            interpolate.out_port(0))

        rename_nodes([(upsample, upsample_name + '/delete'),
                      (interpolate, upsample_name)])

        convert_to_float = Cast(graph, dict(dst_type=np.float32)).create_node()
        convert_to_int = Cast(graph, dict(dst_type=np.int64)).create_node()

        mul.in_port(0).get_connection().insert_node(convert_to_float)
        mul.out_port(0).get_connection().insert_node(convert_to_int)
Example #3
0
def replace_resize(graph: Graph, resize: Node):
    log.debug("Converting of ONNX Resize-10 to Interpolate-4 "
              "is triggered for node {}.".format(
                  resize.soft_get('name', resize.id)))

    resize_name = resize.soft_get('name', resize.id)

    rank_node = Rank(graph, {'name': resize_name + '/max_axes'}).create_node()
    range_node = create_op_with_const_inputs(graph, Range, {
        0: int64_array(2),
        2: int64_array(1)
    }, {'name': resize_name + '/axes'})

    sizes_ss = create_op_with_const_inputs(graph, StridedSlice, {
        1: int64_array([2]),
        2: int64_array([0]),
        3: int64_array([1])
    }, {
        'name': resize_name + '/sizes_ss',
        'begin_mask': int64_array([1]),
        'end_mask': int64_array([0]),
        'new_axis_mask': int64_array([0]),
        'shrink_axis_mask': int64_array([0]),
        'ellipsis_mask': int64_array([0])
    })
    scales_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([2]),
            2: int64_array([0]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/scales_ss',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([0]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })

    rank_node.out_port(0).connect(range_node.in_port(1))

    interpolate_node = Interpolate(
        graph, {
            'version': 'opset4',
            'mode': 'linear_onnx' if resize.mode == 'linear' else 'nearest',
            'coordinate_transformation_mode': 'asymmetric',
            'cube_coeff': -0.75,
            'nearest_mode': 'simple',
            'pads_begin': int64_array([0]),
            'pads_end': int64_array([0]),
            'antialias': 0,
            'shape_calculation_mode': 'scales',
            'in_ports_count': 4
        }).create_node()

    range_node.out_port(0).connect(interpolate_node.in_port(3))
    shape_of = Shape(graph, {'name': resize_name + '/ShapeOf'}).create_node()

    # When we calculate 'sizes' input as floor(input_shape * scales), we can get incorrect 'sizes' if, e.g.,
    # scales = [1.0, 1.0, 1.33333, 2.0], input_shape = [1, 3, 30, 200], because
    # input_shape * scales = [1, 3, 39.9999, 400], and floor(input_shape * scales)[2] == 39, not 40.
    # Maybe we need to calculate 'sizes' input as floor(input_shape * scales + eps), where eps is some small
    # floating point number, e.g. 1.0e-5. But, in this case, if scales = [1.0, 1.0, 1.333333, 2.0],
    # input_shape = [1, 3, 30, 200], floor(input_shape * scales + eps) = 39, not 40, because
    # input_shape[2] * scales[2] + 1.0e-5 =  39.99991.
    # Hence, we need to calculate 'sizes' as floor(input_shape * (scales + eps)).
    add_node = create_op_with_const_inputs(graph, Add,
                                           {1: float_array([1.0e-5])},
                                           {'name': resize_name + '/Add'})

    dst_dtype = np.float32  # even if data_type=FP16 use float32 for shape values

    cast_shape_to_float = Cast(graph, {'dst_type': dst_dtype}).create_node()

    shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
    mul_node = Mul(graph, {
        'name': resize_name + '/Mul'
    }).create_node([cast_shape_to_float, add_node])
    floor_node = Floor(graph, {
        'name': resize_name + '/Floor'
    }).create_node([mul_node])
    cast_mul_result_to_int = Cast(graph, {
        'dst_type': np.int64
    }).create_node([floor_node])
    cast_mul_result_to_int.out_port(0).connect(sizes_ss.in_port(0))
    sizes_ss.out_port(0).connect(interpolate_node.in_port(1))

    scales_ss.out_port(0).connect(interpolate_node.in_port(2))

    connection_of_resize_input = resize.in_port(0).get_connection()
    connection_of_resize_input.set_destination(interpolate_node.in_port(0))

    connection_of_scales = resize.in_port(1).get_connection()
    connection_of_scales.set_destination(scales_ss.in_port(0))

    connection_of_resize_input.get_source().connect(shape_of.in_port(0))
    connection_of_resize_input.get_source().connect(rank_node.in_port(0))
    connection_of_scales.get_source().connect(add_node.in_port(0))

    rename_nodes([(resize, resize_name + '/delete'),
                  (interpolate_node, resize_name)])
    resize.out_port(0).get_connection().set_source(
        interpolate_node.out_port(0))
def replace_resize(graph: Graph, resize: Node):
    log.debug("Converting of ONNX Resize-11 to Interpolate-4 "
              "is triggered for node {}.".format(
                  resize.soft_get('name', resize.id)))

    input_shape = resize.in_port(0).data.get_shape()
    input_rank = len(input_shape)
    resize_name = resize.soft_get('name', resize.id)
    if input_rank not in {4, 5}:
        log.warning(
            'The input shape is not 4D or 5D for op with name {}'.format(
                resize_name))
        return

    assert (resize.is_in_port_connected(0) and (resize.is_in_port_connected(2) or resize.is_in_port_connected(3))), \
        "Scales or sizes inputs must be connected to Node {} with op {}.".format(resize.soft_get("name", resize.id),
                                                                                 resize.op)

    assert resize.soft_get('coordinate_transformation_mode') != 'tf_crop_and_resize', \
        'Mode tf_crop_and_resize is not supported for op {} with name {}'.format(resize.op,
                                                                                 resize.soft_get("name", resize.id))

    layout = graph.graph['layout']

    if input_rank == 4:
        begin_dim = get_height_dim(layout, input_rank)
        end_dim = get_width_dim(layout, input_rank) + 1
    else:
        begin_dim = get_depth_dim(layout, input_rank)
        end_dim = get_width_dim(layout, input_rank) + 1

    sizes_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([begin_dim]),
            2: int64_array([end_dim]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/StridedSlice_sizes',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })
    scales_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([begin_dim]),
            2: int64_array([end_dim]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/StridedSlice_scales',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })
    axes_node = Const(
        graph, {
            'name': resize_name + '/axis',
            'value': int64_array(np.arange(begin_dim, end_dim))
        }).create_node()

    shape_calculation_mode = 'sizes' if resize.is_in_port_connected(
        3) else 'scales'

    interpolate_node = Interpolate(
        graph, {
            'version': 'opset4',
            'mode': convert_mode(resize.mode),
            'coordinate_transformation_mode':
            resize.coordinate_transformation_mode,
            'cube_coeff': resize.cube_coeff,
            'nearest_mode': resize.nearest_mode,
            'pads_begin': int64_array([0]),
            'pads_end': int64_array([0]),
            'antialias': 0,
            'shape_calculation_mode': shape_calculation_mode,
            'in_ports_count': 4
        }).create_node()

    axes_node.out_port(0).connect(interpolate_node.in_port(3))
    shape_of = Shape(graph, {'name': resize_name + '/ShapeOf'}).create_node()

    add_node = create_op_with_const_inputs(graph, Add,
                                           {1: float_array([1.0e-5])},
                                           {'name': resize_name + '/Add'})

    dst_dtype = np.float32  # even if data_type=FP16 use float32 for shape values

    if not resize.is_in_port_connected(3):
        cast_shape_to_float = Cast(graph, {
            'dst_type': dst_dtype
        }).create_node()
        mul_node = Mul(graph, {'name': resize_name + '/Mul'}).create_node()
        shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
        cast_shape_to_float.out_port(0).connect(mul_node.in_port(0))
        cast_add_result_to_int = Cast(graph, {
            'dst_type': np.int64
        }).create_node()
        floor_node = Floor(graph, {
            'name': resize_name + '/Floor'
        }).create_node()
        mul_node.out_port(0).connect(add_node.in_port(0))
        add_node.out_port(0).connect(floor_node.in_port(0))
        floor_node.out_port(0).connect(cast_add_result_to_int.in_port(0))
        cast_add_result_to_int.out_port(0).connect(sizes_ss.in_port(0))
        sizes_ss.out_port(0).connect(interpolate_node.in_port(1))
        scales_ss.out_port(0).connect(interpolate_node.in_port(2))

        connection_of_resize_input = resize.in_port(0).get_connection()
        connection_of_resize_input.set_destination(interpolate_node.in_port(0))

        connection_of_scales = resize.in_port(2).get_connection()
        connection_of_scales.set_destination(scales_ss.in_port(0))

        connection_of_resize_input.get_source().connect(shape_of.in_port(0))
        connection_of_scales.get_source().connect(mul_node.in_port(1))
    else:
        cast_shape_to_float = Cast(graph, {
            'dst_type': dst_dtype
        }).create_node()
        cast_sizes_to_float = Cast(graph, {
            'dst_type': dst_dtype
        }).create_node()
        div_node = Div(graph, {'name': resize_name + '/Div'}).create_node()
        cast_sizes_to_float.out_port(0).connect(div_node.in_port(0))
        cast_shape_to_float.out_port(0).connect(div_node.in_port(1))
        shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
        div_node.out_port(0).connect(add_node.in_port(0))
        add_node.out_port(0).connect(scales_ss.in_port(0))
        scales_ss.out_port(0).connect(interpolate_node.in_port(2))
        sizes_ss.out_port(0).connect(interpolate_node.in_port(1))

        connection_of_resize_input = resize.in_port(0).get_connection()
        connection_of_resize_input.set_destination(interpolate_node.in_port(0))

        connection_of_sizes = resize.in_port(3).get_connection()
        connection_of_sizes.set_destination(sizes_ss.in_port(0))

        connection_of_resize_input.get_source().connect(shape_of.in_port(0))
        connection_of_sizes.get_source().connect(
            cast_sizes_to_float.in_port(0))

    rename_nodes([(resize, resize_name + '/delete'),
                  (interpolate_node, resize_name)])
    resize.out_port(0).get_connection().set_source(
        interpolate_node.out_port(0))