def add_unsqueeze_for_new(graph: Graph, ss_node: Node): log.info( "StridedSlice op with new axis mask '{}' has been detected".format( ss_node.id)) if len(ss_node.in_nodes()) != 4 or len(ss_node.out_nodes()) != 1: return shape_out = ss_node.out_node().shape dim = mo_array(range(len(ss_node['new_axis_mask'])))[mo_array( ss_node['new_axis_mask'], dtype=bool)] ss_shape = [] for i in range(0, len(ss_node['new_axis_mask'])): if not ss_node['new_axis_mask'][i]: ss_shape.append(shape_out[i]) else: ss_node['new_axis_mask'][i] = 0 ss_node.out_port(0).data.set_shape(ss_shape) # insert Unsqueeze unsqueeze_node = Unsqueeze(graph, dict(name=ss_node.name + '/Unsqueeze_new')).create_node() ss_node.out_port(0).get_connection().insert_node(unsqueeze_node) unsqueeze_node.out_port(0).data.set_shape(shape_out) dims_node = Const(graph, { 'name': unsqueeze_node.id + '/Indices', 'value': int64_array(dim) }).create_node() dims_node.out_port(0).connect(unsqueeze_node.in_port(1))
def replace_pattern(self, graph: Graph, match: dict): bias_add = match['BiasAdd'] # Replace BiasAdd by Add operation new_add = Add(graph, {'name': bias_add.id + '/Add'}).create_node() bias_add.in_port(0).get_connection().set_destination(new_add.in_port(0)) bias_add.in_port(1).get_connection().set_destination(new_add.in_port(1)) bias_add.out_port(0).get_connection().set_source(new_add.out_port(0)) if bias_add.data_format != 'NCHW': return input_shape = new_add.in_port(0).data.get_shape() bias_shape = new_add.in_port(1).data.get_shape() assert len(bias_shape) == 1 unsqueeze_dims = np.arange(len(input_shape)) channel_dim = get_features_dim('NCHW', len(input_shape)) unsqueeze_dims = np.delete(unsqueeze_dims, channel_dim, 0) unsqueeze_node = Unsqueeze(graph, {'name': new_add.id + '/BiasUnsqueeze'}).create_node() unsqueeze_dims_node = Const(graph, {'name': new_add.id + '/Dims', 'value': unsqueeze_dims}).create_node() # Reconnecting nodes unsqueeze_node.in_port(1).connect(unsqueeze_dims_node.out_port(0)) unsqueeze_node['override_output_shape'] = True new_add.in_port(1).get_connection().insert_node(unsqueeze_node)
def unsqueeze_num_directions(graph: Graph, match: dict): """ Assuming considered LSTM/GRU/RNN node should has num_directions in output shape and add Unsqueeze to match it. """ rnn_layer = match['rnn_layer'] rnn_layer_name = rnn_layer.soft_get('name', rnn_layer.id) # num_directions is at 1st position in output shape, and in 0st position in hidden and cell states # please refer to docs in this transform direction_dim = [1, 0, 0] # index of dimension with direction index for i in rnn_layer.out_nodes(): old_data_node = rnn_layer.out_node(i) old_shape = old_data_node.shape.copy() new_shape = shape_delete(old_shape, direction_dim[i]) data = Op._create_data_node(graph, name=rnn_layer.name + '/Out/{}/'.format(i), attrs={'shape': new_shape}) graph.remove_edge(rnn_layer.id, old_data_node.id) graph.add_edge(rnn_layer.id, data.id, key=0, out=i) unsqueeze = Unsqueeze(graph, dict()) unsqueeze_dim_data = Const(graph, {'name': rnn_layer.name + '/UnsqueezeNumDirections/{}/Dim'.format(i), 'value': int64_array([direction_dim[i]])}).create_node_with_data() unsqueeze.create_node_with_data([data, unsqueeze_dim_data], dict(name=rnn_layer_name + '/UnsqueezeNumDirections/{}'.format(i)), data_nodes=[old_data_node])
def test_unsqueeze_infer(self, input_shape, unsq_dims, output_shape, ref_uns_dims, input_value, output_value): graph = build_graph( self.nodes_attributes, [('data_1', 'unsq'), ('unsq_dims_const', 'unsq_dims'), ('unsq_dims', 'unsq'), ('unsq', 'data_2')], { 'data_1': { 'shape': input_shape, 'value': input_value }, 'unsq_dims': { 'value': unsq_dims, 'shape': unsq_dims.shape }, 'unsq_dims_const': { 'value': unsq_dims, 'shape': unsq_dims.shape }, }) graph_ref = build_graph( self.nodes_attributes, [('data_1', 'unsq'), ('unsq_dims_const', 'unsq_dims'), ('unsq_dims', 'unsq'), ('unsq', 'data_2')], { 'data_1': { 'shape': input_shape, 'value': input_value }, 'unsq_dims': { 'value': ref_uns_dims, 'shape': ref_uns_dims.shape }, 'unsq_dims_const': { 'value': ref_uns_dims, 'shape': ref_uns_dims.shape }, 'data_2': { 'shape': output_shape, 'value': output_value }, }) unsqueeze_node = Node(graph, 'unsq') Unsqueeze.infer(unsqueeze_node) (flag, resp) = compare_graphs(graph, graph_ref, 'data_2') self.assertTrue(flag, resp) self.assertTrue( strict_compare_tensors( Node(graph, 'data_2').shape, Node(graph_ref, 'data_2').shape)) if Node(graph_ref, 'data_2').value is not None: self.assertTrue( strict_compare_tensors( Node(graph, 'data_2').value, Node(graph_ref, 'data_2').value))
def find_and_replace_pattern(self, graph: Graph): for expand_dims_node in graph.get_op_nodes(op='ExpandDims'): if len(expand_dims_node.in_nodes()) == 1: expand_axis = expand_dims_node.expand_axis if not isinstance(expand_axis, np.ndarray): expand_axis = int64_array([expand_axis]).flatten() unsqueeze_node = Unsqueeze(graph, {'name': expand_dims_node.id + '/Unsqueeze'}).create_node() unsqueeze_dims_node = Const(graph, {'name': expand_dims_node.id + '/Dims', 'value': expand_axis}).create_node() expand_dims_node.in_port(0).get_connection().set_destination(unsqueeze_node.in_port(0)) expand_dims_node.out_port(0).get_connection().set_source(unsqueeze_node.out_port(0)) unsqueeze_node.in_port(1).connect(unsqueeze_dims_node.out_port(0)) elif len(expand_dims_node.in_nodes()) == 2: # For Unsqueeze-13 from ONNX expand_dims_name = expand_dims_node.soft_get('name', expand_dims_node.id) unsqueeze_node = Unsqueeze(graph, {'name': expand_dims_name + '/Unsqueeze'}).create_node() rename_nodes([(expand_dims_node, expand_dims_name + "/TBR"), (unsqueeze_node, expand_dims_name)]) expand_dims_node.in_port(0).get_connection().set_destination(unsqueeze_node.in_port(0)) expand_dims_node.in_port(1).get_connection().set_destination(unsqueeze_node.in_port(1)) expand_dims_node.out_port(0).get_connection().set_source(unsqueeze_node.out_port(0)) else: log.error('The ExpandDims node {} has wrong number of inputs'.format(expand_dims_node.soft_get('name')))
def replace_pattern(graph: Graph, match: dict): fq = match['fq'] if len(fq.out_port(0).get_destinations()) > 1: # FQ should have only one child -- Transpose for optimization return transpose = match['transpose'] name = fq.soft_get('name', fq.id) input_shape = transpose.in_port(0).data.get_shape() # detaching transpose from the graph transpose.out_port(0).get_connection().set_source( transpose.in_port(0).get_connection().get_source()) transpose.in_port(0).disconnect() for idx, port in fq.in_ports().items(): transpose_copy = transpose.copy_node( {'override_output_shape': True}) transpose.in_port(1).get_source().connect( transpose_copy.in_port(1)) start_port = transpose_copy.in_port(0) idxs = np.arange(len(input_shape) - len(port.data.get_shape())) if idxs.size != 0: axis = Const( graph, { 'name': name + '/in_{}_unsqueeze_axis'.format(idx), 'value': int64_array(idxs) }).create_node() unsqueeze = Unsqueeze( graph, { 'name': name + '/in_{}_unsqueeze'.format(idx) }).create_node() axis.out_port(0).connect(unsqueeze.in_port(1)) unsqueeze.out_port(0).connect(transpose_copy.in_port(0)) start_port = unsqueeze.in_port(0) src = port.get_source() port.get_connection().set_source(transpose_copy.out_port(0)) src.connect(start_port)
def extract(cls, node: Node): Unsqueeze.update_node_stat(node) return cls.enabled
def mxrepeat_decomposition(node: Node): graph = node.graph name = node.soft_get('name', node.id) rename_node(node, name + '/to_be_removed') # Unqueeze input_rank = Rank(graph, {'name': name + '/Rank'}).create_node() node.in_port(0).get_source().connect(input_rank.in_port(0)) axis = get_canonical_axis_index_node(input_rank, node.axis) unsqueeze_axis = create_op_node_with_second_input( graph, Add, int64_array([1]), {'name': name + '/Unsqueeze/Axis'}, input_node=axis) unsqueeze = Unsqueeze(graph, { 'name': name + '/Unsqueeze' }).create_node() unsqueeze.in_port(1).connect(unsqueeze_axis.out_port(0)) # Tile (1, 1, ..., repeats, ..., 1) # we generate tile array according to the following table: # parts: | first | repeats | second | # i: | 0, 1, ..., axis,| axis + 1,| ..., rank+1 | # tile_array: | 1, 1, ..., 1 ,| repeats ,| ..., 1 | one = Const(graph, { 'name': name + '/Broadcast/One', 'value': int64_array([1]) }).create_node() first_ones = Broadcast(graph, { 'name': name + '/Broadcast/Ones_first_part' }).create_node() first_ones.in_port(0).connect(one.out_port(0)) first_ones.in_port(1).connect(unsqueeze_axis.out_port(0)) repeats = Const(graph, { 'name': name + '/repeats', 'value': int64_array([node.repeats]) }).create_node() second_ones = Broadcast(graph, { 'name': name + '/Broadcast/Ones_second_part' }).create_node() second_part_broadcast_shape = Sub( graph, { 'name': name + '/Broadcast/Shape/second_part' }).create_node() second_part_broadcast_shape.in_port(0).connect(input_rank.out_port(0)) second_part_broadcast_shape.in_port(1).connect( unsqueeze_axis.out_port(0)) second_ones.in_port(0).connect(one.out_port(0)) second_ones.in_port(1).connect(second_part_broadcast_shape.out_port(0)) tile_repeats = new_shape_node_from_shape_nodes( [first_ones, repeats, second_ones]) tile = Tile(graph, {'name': name + '/Tile'}).create_node() tile.in_port(1).connect(tile_repeats.out_port(0)) # Reshape (input_shape[:axis], input_shape[axis] * repeats, input_shape[axis+1:]) # we generate reshape dim array according to the following table: # parts: | first | rep | second | # i: | 0, 1, ... ,| axis, | ..., rank | # dim_array: | inp_sh[i] ,| input_shape[axis] * repeats ,| inp_sh[i] | input_shape = Shape(graph, {'name': name + '/Shape'}).create_node() node.in_port(0).get_source().connect(input_shape.in_port(0)) first_input_shape_part = get_shape_values_by_range_idxs( input_shape, input_rank, begin=0, end=node.axis, include_begin=True, include_end=False) original_axis_dim = create_op_with_const_inputs( graph, Gather, {2: int64_array(0)}, {'name': name + '/OriginalDim'}, input_node=input_shape) original_axis_dim.in_port(1).connect(axis.out_port(0)) repeated_dimention = Mul(graph, { 'name': name + '/RepeatedDim' }).create_node() repeated_dimention.in_port(0).connect(original_axis_dim.out_port(0)) repeated_dimention.in_port(1).connect(repeats.out_port(0)) second_input_shape_part = get_shape_values_by_range_idxs( input_shape, input_rank, begin=node.axis, end=-1, include_begin=False, include_end=True) output_shape = new_shape_node_from_shape_nodes([ first_input_shape_part, repeated_dimention, second_input_shape_part ]) reshape = Reshape(graph, {'name': name}).create_node() rename_node(reshape, name) reshape.in_port(1).connect(output_shape.out_port(0)) # Final connections node.in_port(0).get_connection().set_destination(unsqueeze.in_port(0)) tile.in_port(0).connect(unsqueeze.out_port(0)) reshape.in_port(0).connect(tile.out_port(0)) node.out_port(0).get_connection().set_source(reshape.out_port(0))
def replace_pattern(self, graph: Graph, match: dict): lstm = match['lstm'] # Build TensorIterator body first body = Graph(name=lstm.name + '/sub_graph') body.graph = graph.graph # 1. Input squeeze Reshape inputs = [Op._create_data_node(body, lstm.name + '/inport/' + str(inp), {'shape': lstm.in_node(inp).shape.copy(), 'value': lstm.in_node(inp).value.copy() if lstm.in_node(inp).value is not None and inp in [1, 2] else None}) for inp in [0, 4, 5, 1, 2]] # X, WR, B, h_init, c_init inputs[0].shape[lstm.sequence_dim] = 1 input_squeeze = Squeeze(body, dict(name=lstm.name + '/input_squeeze', internal_layer_id=0)) squeeze_dim_data = Const(body, {'name': lstm.name + '/input_squeeze_dim', 'value': [lstm.sequence_dim]}).create_node_with_data() inputs[0] = input_squeeze.create_node_with_data([inputs[0], squeeze_dim_data], edge_attrs=[{'internal_port_id': 0}]) # 2. Output unsqueeze Reshape outputs = [Op._create_data_node(body, lstm.name + '/outport/' + str(out), {'shape': lstm.out_node(out).shape.copy() if out in lstm.out_nodes() else lstm.in_node(4).shape.copy()}) for out in [0, 1]] for out in outputs: add_opoutput(body, out.id, 0, False) outputs[0].shape = shape_delete(outputs[0].shape, lstm.sequence_dim) output_unsqueeze = Unsqueeze(body, dict(name=lstm.name + 'output_unsqueeze', internal_layer_id=2)) unsqueeze_dim_data = Const(body, {'name': lstm.name + '/output_unsqueeze_dim', 'value': [lstm.sequence_dim]}).create_node_with_data() # 3. LSTMCell lstm_cell_op = LSTMCell(body, dict(hidden_size=lstm.hidden_size, activations=lstm.activations, activation_alpha=lstm.activation_alpha, activation_beta=lstm.activation_beta, clip=lstm.clip, input_forget=lstm.input_forget, name=lstm.name + '/LSTMCell', internal_layer_id=1)) lstm_cell_node = lstm_cell_op.create_node_with_data(inputs, data_nodes=outputs, edge_attrs=[{}, {'internal_port_id': 1}, {'internal_port_id': 2}, {'bin': 'weights'}, {'bin': 'biases'}]) lstm_cell_node[0].in_node().out_edge(0)['internal_port_id'] = 4 lstm_cell_node[0].in_node().out_edge(1)['internal_port_id'] = 5 lstm_cell_node[0] = output_unsqueeze.create_node_with_data([lstm_cell_node[0], unsqueeze_dim_data]) lstm_cell_node[0].in_node().out_edge(0)['internal_port_id'] = 3 add_opoutput(body, lstm_cell_node[0].id, 0, False) # 4. TensorIterator layer creating assert lstm.direction in ['forward', 'reverse'] if lstm.direction == 'forward': stride = 1 start = None end = None else: assert lstm.direction == 'reverse' stride = -1 start = -1 end = 0 output_port_map = [{ 'external_port_id': 3, 'internal_layer_id': 2, 'internal_port_id': 3, 'axis': lstm.sequence_dim, 'stride': stride, 'start': start, 'end': end, 'part_size': 1, }] # Adding h_state, c_state to outputs if len(lstm.out_nodes()) == 3: output_port_map.extend([{ 'external_port_id': 4, 'internal_layer_id': 1, 'internal_port_id': 4, }, { 'external_port_id': 5, 'internal_layer_id': 1, 'internal_port_id': 5, }]) ti_op = TensorIterator(graph, { 'name': lstm.name + '/TensorIterator', 'body': body, 'in_ports_count': 3, 'out_ports_count': len(lstm.out_nodes()), 'input_port_map': [ { 'external_port_id': 0, 'internal_layer_id': 0, 'internal_port_id': 0, 'axis': lstm.sequence_dim, 'stride': stride, 'start': start, 'end': end, 'part_size': 1, }, { 'external_port_id': 1, 'internal_layer_id': 1, 'internal_port_id': 1, }, { 'external_port_id': 2, 'internal_layer_id': 1, 'internal_port_id': 2, }, ], 'output_port_map': output_port_map, 'back_edges': [ { 'from_layer': 1, 'from_port': 4, 'to_layer': 1, 'to_port': 1, }, { 'from_layer': 1, 'from_port': 5, 'to_layer': 1, 'to_port': 2, }, ] }) assert sorted(lstm.out_nodes().keys()) == list(range(len(lstm.out_nodes()))), \ "There are gaps in output ports of LSTMSequence operation. Node {}".format(lstm.id) outs = ti_op.create_node_with_data([lstm.in_node(i) for i in [0, 4, 5]], # X, h_init, c_init data_nodes=[lstm.out_node(i) for i in range(len(lstm.out_nodes()))], edge_attrs=[{'external_port_id': 0}, {'external_port_id': 1}, {'external_port_id': 2}]) if not isinstance(outs, list): outs = list([outs]) graph.remove_node(lstm.id) outs[0].in_edge(0)['external_port_id'] = 3 for i, out in enumerate(outs[1:]): external_port_id = 4 + i out.in_edge()['external_port_id'] = external_port_id ti = outs[0].in_node() TensorIterator.cover_body_input_data_nodes_with_parameter_ops(ti) TensorIterator.cover_body_constant_data_nodes_with_const_ops(ti) TensorIterator.normalize_internal_ids(ti)
def replace_pattern(graph, match: dict): # Here we will found all parts of TI: condition, inputs/outputs, back edges, body and create TensorIterator Op # and make all checks needed for TensorIterator work cond_data = match['condition'].out_node( 0) if not match['condition'].out_port(0).disconnected() else None time_data = match['condition'].out_node(1) if len( match['condition'].out_nodes()) >= 1 else None name = match['condition'].name back_edges = [] inputs = [] outputs = [] if cond_data is not None: for node in cond_data.out_nodes(): if node['kind'] == 'op' and node[ 'op'] == 'TensorIteratorBackEdge': back_edges.append(node.id) elif node['kind'] == 'op' and node[ 'op'] == 'TensorIteratorInput': inputs.append(node.id) elif node['kind'] == 'op' and node[ 'op'] == 'TensorIteratorOutput': outputs.append(node.id) if time_data is not None: for node in time_data.out_nodes(): if node['kind'] == 'op' and node['op'] == 'TensorIteratorInput': inputs.append(node.id) elif node['kind'] == 'op' and node[ 'op'] == 'TensorIteratorOutput': outputs.append(node.id) else: # something goes wrong here assert False condition = match['condition'] tensor_sequence_length = condition.in_node(0) nodes_to_remove = [ n.id for n in (condition, cond_data, time_data, tensor_sequence_length) if n is not None ] graph.remove_nodes_from(nodes_to_remove) body_nodes, extra_inputs = get_body(graph, inputs, outputs) if cond_data is not None: body_nodes = list(set(body_nodes) - set([cond_data])) inputs += extra_inputs assert all([node in graph.nodes() for node in body_nodes]) inputs = [Node(graph, node) for node in inputs] outputs = [Node(graph, node) for node in outputs] back_edges = [Node(graph, node) for node in back_edges] external_inputs = [{ 'external_data_id': node.in_node(1 if node.has_valid('axis') else 0), 'internal_data_id': node.out_node(0), 'axis': node.axis, 'start': node.start, 'end': node.end, 'stride': node.stride, 'part_size': node.part_size } for node in inputs] external_outputs = [{ 'external_data_id': node.out_node(0), 'internal_data_id': node.in_node(1 if node.has_valid('axis') else 0), 'axis': node.axis, 'start': node.start, 'end': node.end, 'stride': node.stride, 'part_size': node.part_size } for node in outputs] back_edges_data = [{ 'from_data_id': node.in_node(1), 'to_data_id': node.out_node(0), 'init_data_id': node.in_node(0), } for node in back_edges] body = Graph(name='body') body.graph = graph.graph body.add_nodes_from([(node, graph.node[node]) for node in body_nodes]) body.add_edges_from([ (u, v, k, d) for u, v, k, d in graph.edges(data=True, keys=True) if u in body_nodes and v in body_nodes ]) graph.remove_nodes_from(body_nodes + [match['condition'].id] + [inp.id for inp in inputs] + [out.id for out in outputs]) internal_id_count = 0 real_back_edges = [] for edge in back_edges_data: assert edge['from_data_id'].id in body.nodes() assert edge['to_data_id'].id in body.nodes() assert edge['init_data_id'].id in body.nodes() edge['from_data_id'] = Node(body, edge['from_data_id'].id) edge['to_data_id'] = Node(body, edge['to_data_id'].id) edge['init_data_id'] = Node(body, edge['init_data_id'].id) add_opoutput(body, edge['from_data_id'].id, 0, False) # Assign/reuse ids for the back-edge start; it comes from from_data_id assert len(edge['from_data_id'].in_nodes()) == 1 # layer id if not edge['from_data_id'].in_node().has_valid( 'internal_layer_id'): edge['from_data_id'].in_node( )['internal_layer_id'] = internal_id_count internal_id_count += 1 edge['from_layer'] = edge['from_data_id'].in_node( )['internal_layer_id'] # port id if 'internal_port_id' not in edge['from_data_id'].in_edge(): edge['from_data_id'].in_edge( )['internal_port_id'] = internal_id_count internal_id_count += 1 edge['from_port'] = edge['from_data_id'].in_edge( )['internal_port_id'] # Look at all consumers for a data that ends a back-edge # For each such consumer, there will be a separate back-edge (and input) current_real_back_edges = [] for _, consumer, key, edge_attrs in body.out_edges( edge['to_data_id'].id, data=True, keys=True): real_edge = {} real_edge.update( edge) # all real back_edges have the same back-edge start consumer = Node(body, consumer) if real_edge['to_data_id'].in_node().has_valid( 'internal_layer_id'): assert False real_edge['to_data_id'].out_node()['internal_layer_id'] = \ real_edge['to_data_id'].in_node().internal_layer_id elif not consumer.has_valid('internal_layer_id'): consumer['internal_layer_id'] = internal_id_count internal_id_count += 1 real_edge['to_layer'] = consumer['internal_layer_id'] assert 'internal_port_id' not in edge_attrs assert len(real_edge['init_data_id'].out_edges()) == 1 assert not 'internal_port_id' in real_edge[ 'init_data_id'].out_edge() edge_attrs['internal_port_id'] = internal_id_count internal_id_count += 1 real_edge['to_port'] = edge_attrs['internal_port_id'] real_edge['consumer'] = consumer real_edge['consumer_key'] = key real_edge['attrs'] = deepcopy(edge_attrs) current_real_back_edges.append(real_edge) # connect initial data node with each consumer providing actual edge attributes body.add_edges_from([ (real_edge['init_data_id'].id, real_edge['consumer'].id, real_edge['consumer_key'], real_edge['attrs']) for real_edge in current_real_back_edges ]) body.remove_nodes_from( [edge['to_data_id'].id, edge['to_data_id'].in_node().id]) real_back_edges += current_real_back_edges real_external_inputs = [] for ext_inp in external_inputs: assert ext_inp['external_data_id'].id not in body.nodes() assert ext_inp['internal_data_id'].id in body.nodes() ext_inp['internal_data_id'] = Node(body, ext_inp['internal_data_id'].id) if ext_inp['axis'] is not None: # Insert squeezing resize at input port that has partitioning shape = ext_inp['internal_data_id'].shape.copy() assert not ext_inp['internal_data_id'].has_valid('value') new_input_data = Op._create_data_node( body, ext_inp['internal_data_id'].name + '/UnsqueezedInput', dict(shape=shape_insert(shape, ext_inp['axis'], 1))) reshape_op = Squeeze( body, dict(name=ext_inp['internal_data_id'].name + '/InputSqueeze')) reshape_dim_data = Const( body, { 'name': ext_inp['internal_data_id'].name + '/ReshapeDim', 'value': ext_inp['axis'] }).create_node_with_data() reshape_op.create_node_with_data( [new_input_data, reshape_dim_data], data_nodes=[ext_inp['internal_data_id']]) ext_inp['internal_data_id'] = new_input_data ext_inp['internal_data_id']['is_input'] = True assert len(ext_inp['internal_data_id'].in_nodes()) == 0 ext_inp['external_port_id'] = internal_id_count internal_id_count += 1 for _, consumer, edge_attrs in body.out_edges( ext_inp['internal_data_id'].id, data=True): real_ext_inp = {} real_ext_inp.update(ext_inp) consumer = Node(body, consumer) if not consumer.has_valid('internal_layer_id'): consumer['internal_layer_id'] = internal_id_count internal_id_count += 1 if not 'internal_port_id' in edge_attrs: edge_attrs['internal_port_id'] = internal_id_count internal_id_count += 1 real_ext_inp['internal_layer_id'] = consumer[ 'internal_layer_id'] real_ext_inp['internal_port_id'] = edge_attrs[ 'internal_port_id'] real_external_inputs.append(real_ext_inp) for ext_out in external_outputs: assert ext_out['external_data_id'].id not in body.nodes() assert ext_out['internal_data_id'].id in body.nodes() ext_out['internal_data_id'] = Node(body, ext_out['internal_data_id'].id) if ext_out['axis'] is not None: # Insert unsqueezing resize at output port that has partitioning reshape_op = Unsqueeze( body, dict(name=ext_out['internal_data_id'].name + '/OutputUnsqueeze')) reshape_dim_data = Const( body, { 'name': ext_out['internal_data_id'].name + '/ReshapeDim', 'value': ext_out['axis'] }).create_node_with_data() ext_out['internal_data_id'] = reshape_op.create_node_with_data( [ext_out['internal_data_id'], reshape_dim_data]) # TODO: add here working with simple outputs if not any([ out_node.soft_get('op', None) == 'Result' for out_node in ext_out['internal_data_id'].out_nodes() ]): add_opoutput(body, ext_out['internal_data_id'].id, 0, False) # assert len(ext_out['internal_data_id'].out_nodes()) == 0 assert len(ext_out['internal_data_id'].in_nodes()) == 1 if not 'internal_layer_id' in ext_out['internal_data_id'].in_node( ): ext_out['internal_data_id'].in_node( )['internal_layer_id'] = internal_id_count internal_id_count += 1 if not 'internal_port_id' in ext_out['internal_data_id'].in_edge(): ext_out['internal_data_id'].in_edge( )['internal_port_id'] = internal_id_count internal_id_count += 1 ext_out['internal_layer_id'] = ext_out['internal_data_id'].in_node( )['internal_layer_id'] ext_out['internal_port_id'] = ext_out['internal_data_id'].in_edge( )['internal_port_id'] ext_out['external_port_id'] = internal_id_count internal_id_count += 1 # create TensorIterator layer with pre-computed components ti_op = TensorIterator( graph, { 'name': name + '/TensorIterator', 'body': body, 'in_ports_count': len(external_inputs), 'out_ports_count': len(external_outputs), 'input_port_map': [{ field: external_input[field] for field in [ 'external_port_id', 'internal_layer_id', 'internal_port_id', 'axis', 'stride', 'part_size', 'start', 'end' ] } for external_input in real_external_inputs], 'output_port_map': [{ field: external_output[field] for field in [ 'external_port_id', 'internal_layer_id', 'internal_port_id', 'axis', 'stride', 'part_size', 'start', 'end' ] } for external_output in external_outputs], 'back_edges': [{ field: edge[field] for field in ['from_layer', 'from_port', 'to_layer', 'to_port'] } for edge in real_back_edges], }) ti_outs = ti_op.create_node_with_data( inputs=[inp['external_data_id'] for inp in external_inputs], edge_attrs=[{ 'external_port_id': inp['external_port_id'] } for inp in external_inputs], data_nodes=[out['external_data_id'] for out in external_outputs]) if not isinstance(ti_outs, list): ti_outs = [ti_outs] for i, out in enumerate(ti_outs): out.in_edge( )['external_port_id'] = external_outputs[i]['external_port_id'] ti = ti_outs[0].in_node() TensorIterator.cover_body_input_data_nodes_with_parameter_ops(ti) TensorIterator.cover_body_constant_data_nodes_with_const_ops(ti) TensorIterator.normalize_internal_ids(ti)
def replace_pattern(self, graph: Graph, match: dict): if match['rnn_layer']['op'] == 'LSTM': return rnn_layer = match['rnn_layer'] # Build TensorIterator body first body = Graph(name=rnn_layer.name + '/sub_graph') body.graph = graph.graph # 1. Input squeeze Reshape inputs = [ Op._create_data_node( body, rnn_layer.name + '/inport/' + str(inp), { 'shape': rnn_layer.in_node(inp).shape.copy(), 'value': rnn_layer.in_node(inp).value.copy() if rnn_layer.in_node(inp).value is not None and inp in [1, 2] else None }) for inp in [0, 4, 1, 2] ] # X, h_init, WR, B inputs[0].shape[rnn_layer.sequence_dim] = 1 input_squeeze = Squeeze( body, dict(name=rnn_layer.name + '/input_squeeze', internal_layer_id=0)) input_squeeze_dim = Const( body, dict(name=rnn_layer.name + '/input_squeeze_dim', value=rnn_layer.sequence_dim)).create_node_with_data() inputs[0] = input_squeeze.create_node_with_data( [inputs[0], input_squeeze_dim], edge_attrs=[{ 'internal_port_id': 0 }]) # 2. Output unsqueeze Reshape outputs = [ Op._create_data_node( body, rnn_layer.name + '/outport/' + str(out), { 'shape': rnn_layer.out_node(out).shape.copy() if out in rnn_layer.out_nodes() else None }) for out in [0] ] for out in outputs: add_opoutput(body, out.id, 0, False) outputs[0].shape = shape_delete(outputs[0].shape, rnn_layer.sequence_dim) output_unsqueeze_dim = Const( body, dict(name=rnn_layer.name + '/output_unsqueeze_dim', value=rnn_layer.sequence_dim)).create_node_with_data() output_unsqueeze = Unsqueeze( body, dict(name=rnn_layer.name + '/output_unsqueeze/', internal_layer_id=2)) additional_attrs = dict(activations=rnn_layer.activations, activation_alpha=rnn_layer.activation_alpha, activation_beta=rnn_layer.activation_beta, clip=rnn_layer.clip) if rnn_layer.op == 'GRU': additional_attrs[ 'linear_before_reset'] = rnn_layer.linear_before_reset # 3. ***Cell rnn_cell_op = self.get_rnn_cell(rnn_layer['op'])( body, dict(hidden_size=rnn_layer.hidden_size, name=rnn_layer.name + '/{}Cell'.format(rnn_layer.op), **additional_attrs, internal_layer_id=1)) gru_cell = rnn_cell_op.create_node_with_data(inputs, data_nodes=outputs, edge_attrs=[{}, { 'internal_port_id': 1 }, { 'internal_port_id': 2 }, { 'bin': 'weights' }, { 'bin': 'biases' }]) # internal ports for outputs of cell gru_cell.in_node().out_edge(0)['internal_port_id'] = 4 # h_state gru_cell = output_unsqueeze.create_node_with_data( [gru_cell, output_unsqueeze_dim]) gru_cell.in_node().out_edge(0)['internal_port_id'] = 3 add_opoutput(body, gru_cell.id, 0, False) # 4. TensorIterator layer creating assert rnn_layer.direction in ['forward', 'reverse'] if rnn_layer.direction == 'forward': stride = 1 start = None end = None else: assert rnn_layer.direction == 'reverse' stride = -1 start = -1 end = 0 # stacked h_state output_port_map = [{ 'external_port_id': 3, 'internal_layer_id': 2, 'internal_port_id': 3, 'axis': rnn_layer.sequence_dim, 'stride': stride, 'start': start, 'end': end, 'part_size': 1, }] # Adding last h_state to outputs if len(rnn_layer.out_nodes()) == 2: output_port_map.extend([{ 'external_port_id': 4, 'internal_layer_id': 1, 'internal_port_id': 4, }]) ti_op = TensorIterator( graph, { 'name': rnn_layer.name + '/TensorIterator', 'body': body, 'in_ports_count': 4, 'out_ports_count': len(rnn_layer.out_nodes()), 'input_port_map': [ { 'external_port_id': 0, 'internal_layer_id': 0, 'internal_port_id': 0, 'axis': rnn_layer.sequence_dim, 'stride': stride, 'start': start, 'end': end, 'part_size': 1, }, { 'external_port_id': 1, 'internal_layer_id': 1, 'internal_port_id': 1, }, ], 'output_port_map': output_port_map, # only for h state 'back_edges': [ { 'from_layer': 1, 'from_port': 4, 'to_layer': 1, 'to_port': 1, }, ] }) assert sorted(rnn_layer.out_nodes().keys()) == list(range(len(rnn_layer.out_nodes()))), \ "There are gaps in output ports of GRUSequence operation. Node {}".format(rnn_layer.id) outs = ti_op.create_node_with_data( [rnn_layer.in_node(i) for i in [0, 4]], # X, h_init data_nodes=[ rnn_layer.out_node(i) for i in range(len(rnn_layer.out_nodes())) ], edge_attrs=[{ 'external_port_id': 0 }, { 'external_port_id': 1 }]) if not isinstance(outs, list): outs = list([outs]) graph.remove_node(rnn_layer.id) outs[0].in_edge(0)['external_port_id'] = 3 for i, out in enumerate(outs[1:]): external_port_id = 4 + i out.in_edge()['external_port_id'] = external_port_id ti = outs[0].in_node() TensorIterator.cover_body_input_data_nodes_with_parameter_ops(ti) TensorIterator.cover_body_constant_data_nodes_with_const_ops(ti) TensorIterator.normalize_internal_ids(ti)