def PCER_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) cue_iti_responding(timecode, eventcode, 'StartTrial', 'EndTrial', 'PokeOn1') (ind_dur, tot_dur, ind_dur_iti, tot_dur_iti) = cue_responding_duration(timecode, eventcode, 'StartTrial', 'EndTrial', 'PokeOn1', 'PokeOff1') total_pokes = total_head_pokes(eventcode) (all_cue_length_poke_rates, all_iti_length_poke_rates, subtracted_poke_rates) = \ response_rate_across_cue_iti(timecode, eventcode, 'StartTrial', 'EndTrial', 'PokeOn1') new_cols = ['Subject'] + ['Cue_' + str(i + 1) for i in range(len(all_cue_length_poke_rates))] + \ ['ITI_' + str(i + 1) for i in range(len(all_cue_length_poke_rates))] + \ ['ES_' + str(i + 1) for i in range(len(all_cue_length_poke_rates))] across_cue_df = pd.DataFrame([([loaded_file['Subject']]+all_cue_length_poke_rates+all_iti_length_poke_rates+subtracted_poke_rates)], columns=new_cols) df2 = pd.DataFrame([[loaded_file['Subject'], int(i + 1), float(dippers), float(dippers_retrieved), float(retrieval_latency), float(ind_dur), float(tot_dur), float(total_pokes)]], columns=column_list) df2 = pd.merge(df2, across_cue_df, how='left', on=['Subject']) return df2
def CI_training_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) (A_responding, A_iti) = cue_iti_responding(timecode, eventcode, 'ExcitorATrialStart', 'ExcitorATrialEnd', 'PokeOn1') (B_responding, B_iti) = cue_iti_responding(timecode, eventcode, 'ExcitorBTrialStart', 'ExcitorBTrialEnd', 'PokeOn1') df2 = pd.DataFrame([[ loaded_file['Subject'], loaded_file['MSN'], int(i + 1), float(A_responding), float(A_iti), float(B_responding), float(B_iti), float(dippers), float(dippers_retrieved), float(retrieval_latency) ]], columns=column_list) return df2
def crf_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) (left_presses, right_presses, total_presses) = lever_pressing(eventcode, 'LPressOn', 'RPressOn') df2 = pd.DataFrame([[ str(loaded_file['Subject'][1:]), int(i + 1), float(dippers), float(dippers_retrieved), float(retrieval_latency), float(left_presses), float(right_presses), float(total_presses) ]], columns=column_list) return df2
def PIT_test_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (csplus_presses, csmin_presses, total_presses) = lever_pressing(eventcode, 'ActivePress', 'InactivePress') file_keys = list(loaded_file.keys()) for constant in [ 'File', 'Start Date', 'End Date', 'Subject', 'Experiment', 'Group', 'Box', 'Start Time', 'End Time', 'MSN', 'W' ]: file_keys.remove(constant) # All that's left in the list file_keys should be any group labels. group_ids = [] for group in file_keys: group_ids.append(loaded_file[group]) df2 = pd.DataFrame([[ loaded_file['Subject'], int(i + 1), float(csplus_presses), float(csmin_presses), *group_ids ]], columns=column_list + file_keys) return df2
def LI_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (A_dur_individual, A_dur_total, AITI_dur_individual, AITI_dur_total) = cue_responding_duration(timecode, eventcode, 'ExcitorATrialStart', 'ExcitorATrialEnd', 'PokeOn1', 'PokeOff1') (B_dur_individual, B_dur_total, BITI_dur_individual, BITI_dur_total) = cue_responding_duration(timecode, eventcode, 'ExcitorBTrialStart', 'ExcitorBTrialEnd', 'PokeOn1', 'PokeOff1') df2 = pd.DataFrame([[ loaded_file['Subject'], loaded_file['MSN'], int(i + 1), float(A_dur_total), float(AITI_dur_total), (float(A_dur_total) - float(AITI_dur_total)), float(B_dur_total), float(BITI_dur_total), (float(B_dur_total) - float(BITI_dur_total)) ]], columns=column_list) return df2
def pavCA(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) if loaded_file['MSN'] == 'PavCA_LeftUnpaired_2020' or loaded_file['MSN'] == 'PavCA_RightUnpaired_2020': (inactive_poke, inactive_iti_poke, trials_w_poke) = cue_iti_responding_PavCA(timecode, eventcode, 'NoRewardTrialStart', 'NoRewardTrialEnd', 'PokeOn1') (inactive_press, inactive_iti_press, trials_w_press) = cue_iti_responding_PavCA(timecode, eventcode, 'NoRewardTrialStart', 'NoRewardTrialEnd', 'InactivePress') poke_lat = lever_press_latency_PavCA(timecode, eventcode, 'NoRewardTrialStart', 'PokeOn1', 10) press_lat = lever_press_latency_PavCA(timecode, eventcode, 'NoRewardTrialStart', 'InactivePress', 10) poke = inactive_poke press = inactive_press prob_poke = trials_w_poke / 35 prob_press = trials_w_press / 35 iti_poke = inactive_iti_poke elif loaded_file['MSN'] == 'PavCA_LeftPaired_2020' or loaded_file['MSN'] == 'PavCA_RightPaired_2020': (active_poke, active_iti_poke, trials_w_poke) = cue_iti_responding_PavCA(timecode, eventcode, 'RewardTrialStart', 'RewardTrialEnd', 'PokeOn1') (active_press, active_iti_press, trials_w_press) = cue_iti_responding_PavCA(timecode, eventcode, 'RewardTrialStart', 'RewardTrialEnd', 'ActivePress') poke_lat = lever_press_latency_PavCA(timecode, eventcode, 'RewardTrialStart', 'PokeOn1', 10) press_lat = lever_press_latency_PavCA(timecode, eventcode, 'RewardTrialStart', 'ActivePress', 10) poke = active_poke press = active_press prob_poke = trials_w_poke / 35 prob_press = trials_w_press / 35 iti_poke = active_iti_poke df2 = pd.DataFrame([[loaded_file['Subject'], int(i + 1), float(dippers), float(iti_poke), float(poke), float(press), float(prob_poke), float(prob_press), float(poke_lat), float(press_lat)]], columns=column_list) return df2
def trough_train_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) (ind_dur, tot_dur, ind_dur_iti, tot_dur_iti) = cue_responding_duration(timecode, eventcode, 'StartSession', 'EndSession', "PokeOn1", "PokeOff1") # ITI is meaningless here because we are using the whole session total_pokes = total_head_pokes(eventcode) file_keys = list(loaded_file.keys()) for constant in ['File', 'Start Date', 'End Date', 'Subject', 'Experiment', 'Group', 'Box', 'Start Time', 'End Time', 'MSN', 'W']: file_keys.remove(constant) # All that's left in the list file_keys should be any group labels. group_ids = [] for group in file_keys: group_ids.append(loaded_file[group]) df2 = pd.DataFrame([[loaded_file['Subject'], int(i + 1), float(dippers), float(dippers_retrieved), float(retrieval_latency), float(ind_dur), float(tot_dur), float(total_pokes), *group_ids]], columns=column_list+file_keys) return df2
def RVI_Go_NoGo_P1(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (small_go_trials, large_go_trials, small_go_success, large_go_success) = (eventcode.count('GoTrialBegSmallReward'), eventcode.count('GoTrialBegLargeReward'), eventcode.count('GoTrialSuccessSmallReward'), eventcode.count('GoTrialSuccessLargeReward')) small_go_latency = lever_press_latency(timecode, eventcode, 'GoTrialBegSmallReward', 'GoTrialSuccessSmallReward') large_go_latency = lever_press_latency(timecode, eventcode, 'GoTrialBegLargeReward', 'GoTrialSuccessLargeReward') df2 = pd.DataFrame([[ loaded_file['Subject'], int(i + 1), float(small_go_trials), float(large_go_trials), float(small_go_success), float(large_go_success), float(small_go_latency), float(large_go_latency) ]], columns=column_list) return df2
def Go_NoGo(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) (go_trials, nogo_trials) = count_go_nogo_trials(eventcode) (successful_go_trials, successful_nogo_trials) = num_successful_go_nogo_trials(eventcode) go_latency = lever_press_lat_gng(timecode, eventcode, 'LLeverOn', 'SuccessfulGoTrial') + \ lever_press_lat_gng(timecode, eventcode, 'RLeverOn', 'SuccessfulGoTrial') file_keys = list(loaded_file.keys()) for constant in ['File', 'Start Date', 'End Date', 'Subject', 'Experiment', 'Group', 'Box', 'Start Time', 'End Time', 'MSN', 'W']: file_keys.remove(constant) # All that's left in the list file_keys should be any group labels. group_ids = [] for group in file_keys: group_ids.append(loaded_file[group]) df2 = pd.DataFrame([[loaded_file['Subject'], int(i + 1), float(dippers), float(successful_go_trials) / float(go_trials), (float(nogo_trials) - float(successful_nogo_trials)) / float(nogo_trials), float(successful_go_trials) / float(go_trials) - float(successful_nogo_trials) / float(nogo_trials), float(go_latency), *group_ids]], columns=column_list+file_keys) return df2
def crf_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) (left_presses, right_presses, total_presses) = lever_pressing(eventcode, 'LPressOn', 'RPressOn') # Use this code for latencies and rates # # if 'LLeverOn' in eventcode: # press_latency = lever_press_latency(timecode, eventcode, 'LLeverOn', 'LPressOn') # (lever_press_rate, iti_rate) = cue_iti_responding(timecode, eventcode, 'StartSession', 'EndSession', 'LPressOn') # elif 'RLeverOn' in eventcode: # press_latency = lever_press_latency(timecode, eventcode, 'RLeverOn', 'RPressOn') # (lever_press_rate, iti_rate) = cue_iti_responding(timecode, eventcode, 'StartSession', 'EndSession', 'RPressOn') df2 = pd.DataFrame([[ loaded_file['Subject'], int(i + 1), float(dippers), float(dippers_retrieved), float(retrieval_latency), float(left_presses), float(right_presses), float(total_presses) ]], columns=column_list) return df2
def crf_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) (left_presses, right_presses, total_presses) = lever_pressing(eventcode, 'LPressOn', 'RPressOn') start_time = datetime.datetime.strptime( f'{loaded_file["Start Date"]} {loaded_file["Start Time"]}', '%m/%d/%y %H:%M:%S') end_time = datetime.datetime.strptime( f'{loaded_file["End Date"]} {loaded_file["End Time"]}', '%m/%d/%y %H:%M:%S') sess_length = end_time - start_time sess_length = sess_length.seconds # Use this code for latencies and rates # # if 'LLeverOn' in eventcode: # press_latency = lever_press_latency(timecode, eventcode, 'LLeverOn', 'LPressOn') # (lever_press_rate, iti_rate) = cue_iti_responding(timecode, eventcode, 'StartSession', 'EndSession', 'LPressOn') # elif 'RLeverOn' in eventcode: # press_latency = lever_press_latency(timecode, eventcode, 'RLeverOn', 'RPressOn') # (lever_press_rate, iti_rate) = cue_iti_responding(timecode, eventcode, 'StartSession', 'EndSession', 'RPressOn') file_keys = list(loaded_file.keys()) for constant in [ 'File', 'Start Date', 'End Date', 'Subject', 'Experiment', 'Group', 'Box', 'Start Time', 'End Time', 'MSN', 'W' ]: file_keys.remove(constant) # All that's left in the list file_keys should be any group labels. group_ids = [] for group in file_keys: group_ids.append(loaded_file[group]) df2 = pd.DataFrame([[ loaded_file['Subject'], int(i + 1), float(dippers), float(dippers_retrieved), float(retrieval_latency), float(left_presses), float(right_presses), float(total_presses), float(sess_length), *group_ids ]], columns=column_list + file_keys) return df2
def CI_retardation_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (X_dur_individual, X_dur_total, XITI_dur_individual, XITI_dur_total) = cue_responding_duration(timecode, eventcode, 'InhibitorTrialStart', 'InhibitorTrialEnd', 'PokeOn1', 'PokeOff1') df2 = pd.DataFrame([[loaded_file['Subject'], loaded_file['tts'], loaded_file['CI'], int(i + 1), float(X_dur_total), float(XITI_dur_total)]], columns=column_list) return df2
def trough_train_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) df2 = pd.DataFrame([[loaded_file['Subject'], int(i + 1), float(dippers), float(dippers_retrieved), float(retrieval_latency)]], columns=column_list) return df2
def habit_extinction_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (left_presses, right_presses, total_presses) = lever_pressing(eventcode, 'LPressOn', 'RPressOn') pressing_across_test = bin_by_time(timecode, eventcode, (5 * 60), ['LPressOn', 'RPressOn']) df2 = pd.DataFrame([[loaded_file['Subject'], loaded_file['Sex'], int(i + 1), loaded_file['Training'], float(total_presses), pressing_across_test]], columns=column_list) bins_df = df2['Bins'].apply(pd.Series) bins_df = bins_df.rename(columns=lambda x: (x + 1) * 5) df2 = pd.concat([df2[:], bins_df[:]], axis=1) return df2
def CI_summation_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (B_responding, B_iti) = cue_iti_responding(timecode, eventcode, 'ExcitorBTrialStart', 'ExcitorBTrialEnd', 'PokeOn1') (inhibitor_responding, inhibitor_iti) = cue_iti_responding(timecode, eventcode, 'InhibitorTrialStart', 'InhibitorTrialEnd', 'PokeOn1') (B_responding_5, B_iti_5) = binned_responding(timecode, eventcode, 'ExcitorBTrialStart', 'ExcitorBTrialEnd', 'PokeOn1', 5) (inhibitor_responding_5, inhibitor_iti_5) = binned_responding(timecode, eventcode, 'InhibitorTrialStart', 'InhibitorTrialEnd', 'PokeOn1', 5) df2 = pd.DataFrame([[loaded_file['Subject'], loaded_file['MSN'], int(i + 1), float(B_responding), float(B_iti), float(inhibitor_responding), float(inhibitor_iti), float(B_responding_5), float(B_iti_5), float(inhibitor_responding_5), float(inhibitor_iti_5)]], columns=column_list) return df2
def PIT_training_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (A_dur_individual, A_dur_total, AITI_dur_individual, AITI_dur_total) = cue_responding_duration(timecode, eventcode, 'ExcitorATrialStart', 'ExcitorATrialEnd', 'PokeOn1', 'PokeOff1') (B_dur_individual, B_dur_total, BITI_dur_individual, BITI_dur_total) = cue_responding_duration(timecode, eventcode, 'ExcitorBTrialStart', 'ExcitorBTrialEnd', 'PokeOn1', 'PokeOff1') file_keys = list(loaded_file.keys()) for constant in [ 'File', 'Start Date', 'End Date', 'Subject', 'Experiment', 'Group', 'Box', 'Start Time', 'End Time', 'MSN', 'W' ]: file_keys.remove(constant) # All that's left in the list file_keys should be any group labels. group_ids = [] for group in file_keys: group_ids.append(loaded_file[group]) df2 = pd.DataFrame([[ loaded_file['Subject'], loaded_file['MSN'], int(i + 1), float(A_dur_total), float(AITI_dur_total), float(B_dur_total), float(BITI_dur_total), float(A_dur_total - AITI_dur_total), float(B_dur_total - BITI_dur_total), *group_ids ]], columns=column_list + file_keys) return df2
def Go_NoGo(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) (go_trials, nogo_trials) = count_go_nogo_trials(eventcode) (successful_go_trials, successful_nogo_trials) = num_successful_go_nogo_trials(eventcode) df2 = pd.DataFrame([[ loaded_file['Subject'], loaded_file['tts'], int(i + 1), float(dippers), float(go_trials), float(successful_go_trials) ]], columns=column_list) return df2
def crf_function(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) (large_rewards, small_rewards) = num_switch_trials(eventcode) (forced_latency) = lever_press_latency_Switch(timecode, eventcode) df2 = pd.DataFrame([[ loaded_file['Subject'], loaded_file['MSN'], int(i + 1), float(dippers), float(large_rewards), float(small_rewards), float(forced_latency) ]], columns=column_list) return df2
def signtracking(loaded_file, i): """ :param loaded_file: file output from operant box :param i: number of days analyzing :return: data frame of all analysis extracted from file (one animal) """ (timecode, eventcode) = extract_info_from_file(loaded_file, 500) (dippers, dippers_retrieved, retrieval_latency) = reward_retrieval(timecode, eventcode) (inactive_poke, inactive_iti_poke) = cue_iti_responding(timecode, eventcode, 'NoRewardTrialStart', 'NoRewardTrialEnd', 'PokeOn1') (inactive_press, inactive_iti_press) = cue_iti_responding( timecode, eventcode, 'NoRewardTrialStart', 'NoRewardTrialEnd', 'InactivePress') (active_poke, active_iti_poke) = cue_iti_responding(timecode, eventcode, 'RewardTrialStart', 'RewardTrialEnd', 'PokeOn1') (active_press, active_iti_press) = cue_iti_responding(timecode, eventcode, 'RewardTrialStart', 'RewardTrialEnd', 'ActivePress') df2 = pd.DataFrame([[ loaded_file['Subject'], int(i + 1), float(dippers), float(inactive_poke), float(inactive_press), float(active_poke), float(active_press) ]], columns=column_list) return df2
matplotlib.use("TkAgg") from matplotlib import pyplot as plt import numpy as np import tkinter as tk from tkinter.filedialog import askopenfilename # opening data file root = tk.Tk() root.withdraw() file = askopenfilename() loaded_file = load_file(file) # data transformed into lists of time- and eventcodes (timecode, eventcode) = extract_info_from_file(loaded_file, 500) # user input for how many events of each type (On/Off and discrete) to plot long_events = input("How many behavioral On/Off events do you want to show?") long_events = int(long_events) short_events = input("How many discrete events would you like to show?") short_events = int(short_events) fig, ax = plt.subplots() y = 1 # for-loop plotting On/Off events for a in range(0, long_events): # user input for correct event title, then getting list of indices for event event1 = input(
def test_extract_info_from_file(): (dictionary) = load_file("../operantanalysis/sampledata/!2018-11-27_08h39m.Subject _0001.txt") (timecode, eventcode) = extract_info_from_file(dictionary, 500) assert len(timecode) == len(eventcode) assert all(map(lambda x: x >= 0, timecode))