Example #1
0
def test_confusion_matrix():
    labels = [1, 1, 2, 2]
    preds = [1, 1, 2, 2]

    c_matrix = general.confusion_matrix(labels, preds)

    assert c_matrix.shape == (2, 2)
Example #2
0
    # If similarity should be used
    if use_similarity:
        # Creates a SupervisedOPF with pre-computed distances
        opf = SupervisedOPF(pre_computed_distance=input_sim)

    # If similarity should not be used
    else:
        # Creates a SupervisedOPF without pre-computed distances
        opf = SupervisedOPF(distance='log_squared_euclidean')

    # Fits training data into the classifier
    opf.fit(X_train, Y_train, I_train)

    # Predicts new data
    preds = opf.predict(X_test, I_test)

    # Calculates the confusion matrix
    c_matrix = g.confusion_matrix(Y_test, preds)

    # Calculates the classification report
    report = classification_report(Y_test, preds, output_dict=True)

    # Saves confusion matrix in a .npy file
    np.save(f'outputs/{dataset}_{use_similarity}_{seed}_matrix', c_matrix)

    # Opens file to further save
    with open(f'outputs/{dataset}_{use_similarity}_{seed}_report.pkl', 'wb') as f:
        # Saves report to a .pkl file
        pickle.dump(report, f)
Example #3
0
import numpy as np

import opfython.math.general as g

# Defining array, labels and predictions
array = np.asarray([1.5, 2, 0.5, 1.25, 1.75, 3])
labels = [0, 0, 0, 1, 1, 1, 2]
preds = [0, 0, 1, 1, 0, 1, 2]

# Normalizing the array
norm_array = g.normalize(array)
print(norm_array)

# Calculating the confusion matrix
c_matrix = g.confusion_matrix(labels, preds)
print(c_matrix)

# Calculating OPF-like accuracy
opf_acc = g.opf_accuracy(labels, preds)
print(opf_acc)

# Calculating OPF-like accuracy per label
opf_acc_per_label = g.opf_accuracy_per_label(labels, preds)
print(opf_acc_per_label)

# Calculating purity measure
purity = g.purity(labels, preds)
print(purity)