Example #1
0
def main(experiment_name, list_experiments=False, gpu_device='/gpu:0'):
    """Create a tensorflow worker to run experiments in your DB."""
    if list_experiments:
        exps = db.list_experiments()
        print '_' * 30
        print 'Initialized experiments:'
        print '_' * 30
        for l in exps:
            print l.values()[0]
        print '_' * 30
        print 'You can add to the DB with: '\
            'python prepare_experiments.py --experiment=%s' % \
            exps[0].values()[0]
        return
    if experiment_name is None:
        print 'No experiment specified. Pulling one out of the DB.'
        experiment_name = db.get_experiment_name()

    # Prepare to run the model
    config = Config()
    condition_label = '%s_%s' % (experiment_name, py_utils.get_dt_stamp())
    experiment_label = '%s' % (experiment_name)
    log = logger.get(os.path.join(config.log_dir, condition_label))
    experiment_dict = experiments.experiments()[experiment_name]()
    config = add_to_config(d=experiment_dict, config=config)  # Globals
    config, exp_params = process_DB_exps(
        experiment_name=experiment_name, log=log,
        config=config)  # Update config w/ DB params
    dataset_module = py_utils.import_module(model_dir=config.dataset_info,
                                            dataset=config.dataset)
    dataset_module = dataset_module.data_processing()  # hardcoded class name
    train_data, train_means = get_data_pointers(
        dataset=config.dataset,
        base_dir=config.tf_records,
        cv=dataset_module.folds.keys()[1],  # TODO: SEARCH FOR INDEX.
        log=log)
    val_data, val_means = get_data_pointers(dataset=config.dataset,
                                            base_dir=config.tf_records,
                                            cv=dataset_module.folds.keys()[0],
                                            log=log)

    # Initialize output folders
    dir_list = {
        'checkpoints':
        os.path.join(config.checkpoints, condition_label),
        'summaries':
        os.path.join(config.summaries, condition_label),
        'condition_evaluations':
        os.path.join(config.condition_evaluations, condition_label),
        'experiment_evaluations':
        os.path.join(  # DEPRECIATED
            config.experiment_evaluations, experiment_label),
        'visualization':
        os.path.join(config.visualizations, condition_label),
        'weights':
        os.path.join(config.condition_evaluations, condition_label, 'weights')
    }
    [py_utils.make_dir(v) for v in dir_list.values()]

    # Prepare data loaders on the cpu
    config.data_augmentations = py_utils.flatten_list(
        config.data_augmentations, log)
    with tf.device('/cpu:0'):
        train_images, train_labels = data_loader.inputs(
            dataset=train_data,
            batch_size=config.batch_size,
            model_input_image_size=dataset_module.model_input_image_size,
            tf_dict=dataset_module.tf_dict,
            data_augmentations=config.data_augmentations,
            num_epochs=config.epochs,
            tf_reader_settings=dataset_module.tf_reader,
            shuffle=config.shuffle)
        val_images, val_labels = data_loader.inputs(
            dataset=val_data,
            batch_size=config.batch_size,
            model_input_image_size=dataset_module.model_input_image_size,
            tf_dict=dataset_module.tf_dict,
            data_augmentations=config.data_augmentations,
            num_epochs=config.epochs,
            tf_reader_settings=dataset_module.tf_reader,
            shuffle=config.shuffle)
    log.info('Created tfrecord dataloader tensors.')

    # Load model specification
    struct_name = config.model_struct.split(os.path.sep)[-1]
    try:
        model_dict = py_utils.import_module(
            dataset=struct_name,
            model_dir=os.path.join('models', 'structs',
                                   experiment_name).replace(os.path.sep, '.'))
    except IOError:
        print 'Could not find the model structure: %s' % experiment_name

    # Inject model_dict with hyperparameters if requested
    model_dict.layer_structure = hp_opt_utils.inject_model_with_hps(
        layer_structure=model_dict.layer_structure, exp_params=exp_params)

    # Prepare model on GPU
    with tf.device(gpu_device):
        with tf.variable_scope('cnn') as scope:

            # Training model
            if len(dataset_module.output_size) > 1:
                log.warning('Found > 1 dimension for your output size.'
                            'Converting to a scalar.')
                dataset_module.output_size = np.prod(
                    dataset_module.output_size)

            if hasattr(model_dict, 'output_structure'):
                # Use specified output layer
                output_structure = model_dict.output_structure
            else:
                output_structure = None
            model = model_utils.model_class(
                mean=train_means,
                training=True,
                output_size=dataset_module.output_size)
            train_scores, model_summary = model.build(
                data=train_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            log.info('Built training model.')
            log.debug(json.dumps(model_summary, indent=4), verbose=0)
            print_model_architecture(model_summary)

            # Prepare the loss function
            train_loss, _ = loss_utils.loss_interpreter(
                logits=train_scores,
                labels=train_labels,
                loss_type=config.loss_function,
                dataset_module=dataset_module)

            # Add weight decay if requested
            if len(model.regularizations) > 0:
                train_loss = loss_utils.wd_loss(
                    regularizations=model.regularizations,
                    loss=train_loss,
                    wd_penalty=config.regularization_strength)
            train_op = loss_utils.optimizer_interpreter(
                loss=train_loss,
                lr=config.lr,
                optimizer=config.optimizer,
                constraints=config.optimizer_constraints,
                model=model)
            log.info('Built training loss function.')

            train_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,
                pred=train_scores,
                labels=train_labels)  # training accuracy
            if int(train_images.get_shape()[-1]) <= 3:
                tf.summary.image('train images', train_images)
            tf.summary.scalar('training loss', train_loss)
            tf.summary.scalar('training accuracy', train_accuracy)
            log.info('Added training summaries.')

            # Validation model
            scope.reuse_variables()
            val_model = model_utils.model_class(
                mean=val_means,
                training=True,
                output_size=dataset_module.output_size)
            val_scores, _ = val_model.build(  # Ignore summary
                data=val_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            log.info('Built validation model.')

            val_loss, _ = loss_utils.loss_interpreter(
                logits=val_scores,
                labels=val_labels,
                loss_type=config.loss_function,
                dataset_module=dataset_module)
            val_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,
                pred=val_scores,
                labels=val_labels)  # training accuracy
            if int(train_images.get_shape()[-1]) <= 3:
                tf.summary.image('val images', val_images)
            tf.summary.scalar('validation loss', val_loss)
            tf.summary.scalar('validation accuracy', val_accuracy)
            log.info('Added validation summaries.')

    # Set up summaries and saver
    saver = tf.train.Saver(tf.global_variables())
    summary_op = tf.summary.merge_all()

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(tf.global_variables_initializer(),
                 tf.local_variables_initializer()))
    summary_writer = tf.summary.FileWriter(dir_list['summaries'], sess.graph)

    # Set up exemplar threading
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Create dictionaries of important training and validation information
    train_dict = {
        'train_loss': train_loss,
        'train_accuracy': train_accuracy,
        'train_images': train_images,
        'train_labels': train_labels,
        'train_op': train_op,
        'train_scores': train_scores
    }
    val_dict = {
        'val_loss': val_loss,
        'val_accuracy': val_accuracy,
        'val_images': val_images,
        'val_labels': val_labels,
        'val_scores': val_scores,
    }

    # Start training loop
    np.save(
        os.path.join(dir_list['condition_evaluations'],
                     'training_config_file'), config)
    log.info('Starting training')
    output_dict = training.training_loop(
        config=config,
        db=db,
        coord=coord,
        sess=sess,
        summary_op=summary_op,
        summary_writer=summary_writer,
        saver=saver,
        threads=threads,
        summary_dir=dir_list['summaries'],
        checkpoint_dir=dir_list['checkpoints'],
        weight_dir=dir_list['weights'],
        train_dict=train_dict,
        val_dict=val_dict,
        train_model=model,
        val_model=val_model,
        exp_params=exp_params)
    log.info('Finished training.')

    model_name = config.model_struct.replace('/', '_')
    py_utils.save_npys(data=output_dict,
                       model_name=model_name,
                       output_string=dir_list['experiment_evaluations'])
Example #2
0
def main(experiment_name,
         list_experiments=False,
         load_and_evaluate_ckpt=None,
         config_file=None,
         ckpt_file=None,
         gpu_device='/gpu:0'):
    """Create a tensorflow worker to run experiments in your DB."""
    if list_experiments:
        exps = db.list_experiments()
        print '_' * 30
        print 'Initialized experiments:'
        print '_' * 30
        for l in exps:
            print l.values()[0]
        print '_' * 30
        if len(exps) == 0:
            print 'No experiments found.'
        else:
            print 'You can add to the DB with: '\
                'python prepare_experiments.py --experiment=%s' % \
                exps[0].values()[0]
        return

    if experiment_name is None:
        print 'No experiment specified. Pulling one out of the DB.'
        experiment_name = db.get_experiment_name()

    # Prepare to run the model
    config = Config()
    condition_label = '%s_%s' % (experiment_name, py_utils.get_dt_stamp())
    experiment_label = '%s' % (experiment_name)
    log = logger.get(os.path.join(config.log_dir, condition_label))
    experiment_dict = experiments.experiments()[experiment_name]()
    config = add_to_config(d=experiment_dict, config=config)  # Globals
    config.load_and_evaluate_ckpt = load_and_evaluate_ckpt
    config, exp_params = process_DB_exps(
        experiment_name=experiment_name, log=log,
        config=config)  # Update config w/ DB params
    config = np.load(config_file).item()
    dataset_module = py_utils.import_module(model_dir=config.dataset_info,
                                            dataset=config.dataset)
    dataset_module = dataset_module.data_processing()  # hardcoded class name
    train_data, train_means_image, train_means_label = get_data_pointers(
        dataset=config.dataset,
        base_dir=config.tf_records,
        cv=dataset_module.folds.keys()[1],  # TODO: SEARCH FOR INDEX.
        log=log)
    val_data, val_means_image, val_means_label = get_data_pointers(
        dataset=config.dataset,
        base_dir=config.tf_records,
        cv=dataset_module.folds.keys()[0],
        log=log)

    # Initialize output folders
    dir_list = {
        'checkpoints':
        os.path.join(config.checkpoints, condition_label),
        'summaries':
        os.path.join(config.summaries, condition_label),
        'condition_evaluations':
        os.path.join(config.condition_evaluations, condition_label),
        'experiment_evaluations':
        os.path.join(  # DEPRECIATED
            config.experiment_evaluations, experiment_label),
        'visualization':
        os.path.join(config.visualizations, condition_label),
        'weights':
        os.path.join(config.condition_evaluations, condition_label, 'weights')
    }
    [py_utils.make_dir(v) for v in dir_list.values()]

    # Prepare data loaders on the cpu
    if all(isinstance(i, list) for i in config.data_augmentations):
        if config.data_augmentations:
            config.data_augmentations = py_utils.flatten_list(
                config.data_augmentations, log)
    config.epochs = 1
    config.shuffle = False
    with tf.device('/cpu:0'):
        train_images, train_labels = data_loader.inputs(
            dataset=train_data,
            batch_size=config.batch_size,
            model_input_image_size=dataset_module.model_input_image_size,
            tf_dict=dataset_module.tf_dict,
            data_augmentations=config.data_augmentations,
            num_epochs=config.epochs,
            tf_reader_settings=dataset_module.tf_reader,
            shuffle=config.shuffle_train,
            resize_output=config.resize_output)
        if hasattr(config, 'val_augmentations'):
            val_augmentations = config.val_augmentations
        else:
            val_augmentations = config.data_augmentations
        val_images, val_labels = data_loader.inputs(
            dataset=val_data,
            batch_size=config.batch_size,
            model_input_image_size=dataset_module.model_input_image_size,
            tf_dict=dataset_module.tf_dict,
            data_augmentations=['resize_and_crop'],
            num_epochs=config.epochs,
            tf_reader_settings=dataset_module.tf_reader,
            shuffle=config.shuffle_val,
            resize_output=config.resize_output)
    log.info('Created tfrecord dataloader tensors.')

    # Load model specification
    struct_name = config.model_struct.split(os.path.sep)[-1]
    try:
        model_dict = py_utils.import_module(
            dataset=struct_name,
            model_dir=os.path.join('models', 'structs',
                                   experiment_name).replace(os.path.sep, '.'))
    except IOError:
        print 'Could not find the model structure: %s in folder %s' % (
            struct_name, experiment_name)

    # Inject model_dict with hyperparameters if requested
    model_dict.layer_structure = hp_opt_utils.inject_model_with_hps(
        layer_structure=model_dict.layer_structure, exp_params=exp_params)

    # Prepare model on GPU
    with tf.device(gpu_device):
        with tf.variable_scope('cnn') as scope:
            # Normalize labels if needed
            if 'normalize_labels' in exp_params.keys():
                if exp_params['normalize_labels'] == 'zscore':
                    train_labels -= train_means_label['mean']
                    train_labels /= train_means_label['std']
                    log.info('Z-scoring labels.')
                elif exp_params['normalize_labels'] == 'mean':
                    train_labels -= train_means_label['mean']
                    log.info('Mean-centering labels.')

            # Training model
            if len(dataset_module.output_size) == 2:
                log.warning('Found > 1 dimension for your output size.'
                            'Converting to a scalar.')
                dataset_module.output_size = np.prod(
                    dataset_module.output_size)

            if hasattr(model_dict, 'output_structure'):
                # Use specified output layer
                output_structure = model_dict.output_structure
            else:
                output_structure = None
            model = model_utils.model_class(
                mean=train_means_image,
                training=True,
                output_size=dataset_module.output_size)
            train_scores, model_summary = model.build(
                data=train_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            eval_graph = tf.Graph()
            with eval_graph.as_default():
                with eval_graph.gradient_override_map({'selu': 'GradLRP'}):
                    train_grad_images = tf.gradients(
                        train_scores[0] * tf.cast(train_labels, tf.float32),
                        train_images)[0]
            log.info('Built training model.')
            log.debug(json.dumps(model_summary, indent=4), verbose=0)
            print_model_architecture(model_summary)

            # Check the shapes of labels and scores
            if not isinstance(train_scores, list):
                if len(train_scores.get_shape()) != len(
                        train_labels.get_shape()):
                    train_shape = train_scores.get_shape().as_list()
                    label_shape = train_labels.get_shape().as_list()
                    if len(train_shape) == 2 and len(
                            label_shape) == 1 and train_shape[-1] == 1:
                        train_labels = tf.expand_dims(train_labels, axis=-1)
                    elif len(train_shape) == 2 and len(
                            label_shape) == 1 and train_shape[-1] == 1:
                        train_scores = tf.expand_dims(train_scores, axis=-1)

            # Prepare the loss function
            train_loss, _ = loss_utils.loss_interpreter(
                logits=train_scores,  # TODO
                labels=train_labels,
                loss_type=config.loss_function,
                weights=config.loss_weights,
                dataset_module=dataset_module)

            # Add loss tensorboard tracking
            if isinstance(train_loss, list):
                for lidx, tl in enumerate(train_loss):
                    tf.summary.scalar('training_loss_%s' % lidx, tl)
                train_loss = tf.add_n(train_loss)
            else:
                tf.summary.scalar('training_loss', train_loss)

            # Add weight decay if requested
            if len(model.regularizations) > 0:
                train_loss = loss_utils.wd_loss(
                    regularizations=model.regularizations,
                    loss=train_loss,
                    wd_penalty=config.regularization_strength)
            train_op = loss_utils.optimizer_interpreter(
                loss=train_loss,
                lr=config.lr,
                optimizer=config.optimizer,
                constraints=config.optimizer_constraints,
                model=model)
            log.info('Built training loss function.')

            # Add a score for the training set
            train_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,  # TODO: Attach to exp cnfg
                pred=train_scores,  # TODO
                labels=train_labels)

            # Add aux scores if requested
            train_aux = {}
            if hasattr(dataset_module, 'aux_scores'):
                for m in dataset_module.aux_scores:
                    train_aux[m] = eval_metrics.metric_interpreter(
                        metric=m, pred=train_scores,
                        labels=train_labels)[0]  # TODO: Fix for multiloss

            # Prepare remaining tensorboard summaries
            if len(train_images.get_shape()) == 4:
                tf_fun.image_summaries(train_images, tag='Training images')
            if len(train_labels.get_shape()) > 2:
                tf_fun.image_summaries(train_labels, tag='Training_targets')
                tf_fun.image_summaries(train_scores,
                                       tag='Training_predictions')
            if isinstance(train_accuracy, list):
                for tidx, ta in enumerate(train_accuracy):
                    tf.summary.scalar('training_accuracy_%s' % tidx, ta)
            else:
                tf.summary.scalar('training_accuracy', train_accuracy)
            if config.pr_curve:
                if isinstance(train_scores, list):
                    for pidx, train_score in enumerate(train_scores):
                        train_label = train_labels[:, pidx]
                        pr_summary.op(
                            tag='training_pr_%s' % pidx,
                            predictions=tf.cast(
                                tf.argmax(train_score, axis=-1), tf.float32),
                            labels=tf.cast(train_label, tf.bool),
                            display_name='training_precision_recall_%s' % pidx)
                else:
                    pr_summary.op(tag='training_pr',
                                  predictions=tf.cast(
                                      tf.argmax(train_scores, axis=-1),
                                      tf.float32),
                                  labels=tf.cast(train_labels, tf.bool),
                                  display_name='training_precision_recall')
            log.info('Added training summaries.')

            # Validation model
            scope.reuse_variables()
            val_model = model_utils.model_class(
                mean=train_means_image,  # Normalize with train data
                training=False,  # False,
                output_size=dataset_module.output_size)
            val_scores, _ = val_model.build(  # Ignore summary
                data=val_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            eval_graph = tf.Graph()
            with eval_graph.as_default():
                with eval_graph.gradient_override_map({'selu': 'GradLRP'}):
                    val_grad_images = tf.gradients(
                        val_scores[0] * tf.cast(val_labels, tf.float32),
                        val_images)[0]
            log.info('Built validation model.')

            # Check the shapes of labels and scores
            if not isinstance(train_scores, list):
                if len(val_scores.get_shape()) != len(val_labels.get_shape()):
                    val_shape = val_scores.get_shape().as_list()
                    val_label_shape = val_labels.get_shape().as_list()
                    if len(val_shape) == 2 and len(
                            val_label_shape) == 1 and val_shape[-1] == 1:
                        val_labels = tf.expand_dims(val_labels, axis=-1)
                    if len(val_shape) == 2 and len(
                            val_label_shape) == 1 and val_shape[-1] == 1:
                        val_scores = tf.expand_dims(val_scores, axis=-1)
            val_loss, _ = loss_utils.loss_interpreter(
                logits=val_scores,
                labels=val_labels,
                loss_type=config.loss_function,
                weights=config.loss_weights,
                dataset_module=dataset_module)

            # Add loss tensorboard tracking
            if isinstance(val_loss, list):
                for lidx, tl in enumerate(val_loss):
                    tf.summary.scalar('validation_loss_%s' % lidx, tl)
                val_loss = tf.add_n(val_loss)
            else:
                tf.summary.scalar('validation_loss', val_loss)

            # Add a score for the validation set
            val_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,  # TODO
                pred=val_scores,
                labels=val_labels)

            # Add aux scores if requested
            val_aux = {}
            if hasattr(dataset_module, 'aux_scores'):
                for m in dataset_module.aux_scores:
                    val_aux[m] = eval_metrics.metric_interpreter(
                        metric=m, pred=val_scores,
                        labels=val_labels)[0]  # TODO: Fix for multiloss

            # Prepare tensorboard summaries
            if len(val_images.get_shape()) == 4:
                tf_fun.image_summaries(val_images, tag='Validation')
            if len(val_labels.get_shape()) > 2:
                tf_fun.image_summaries(val_labels, tag='Validation_targets')
                tf_fun.image_summaries(val_scores,
                                       tag='Validation_predictions')
            if isinstance(val_accuracy, list):
                for vidx, va in enumerate(val_accuracy):
                    tf.summary.scalar('validation_accuracy_%s' % vidx, va)
            else:
                tf.summary.scalar('validation_accuracy', val_accuracy)
            if config.pr_curve:
                if isinstance(val_scores, list):
                    for pidx, val_score in enumerate(val_scores):
                        val_label = val_labels[:, pidx]
                        pr_summary.op(
                            tag='validation_pr_%s' % pidx,
                            predictions=tf.cast(tf.argmax(val_score, axis=-1),
                                                tf.float32),
                            labels=tf.cast(val_label, tf.bool),
                            display_name='validation_precision_recall_%s' %
                            pidx)
                else:
                    pr_summary.op(tag='validation_pr',
                                  predictions=tf.cast(
                                      tf.argmax(val_scores, axis=-1),
                                      tf.float32),
                                  labels=tf.cast(val_labels, tf.bool),
                                  display_name='validation_precision_recall')
            log.info('Added validation summaries.')

    # Set up summaries and saver
    saver = tf.train.Saver(tf.global_variables())

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(tf.global_variables_initializer(),
                 tf.local_variables_initializer()))

    # Set up exemplar threading
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Create dictionaries of important training and validation information
    train_dict = {
        'train_loss': train_loss,
        'train_images': train_images,
        'train_labels': train_labels,
        'train_op': train_op,
        'train_scores': train_scores,
        'train_grad_images': train_grad_images
    }
    val_dict = {
        'val_loss': val_loss,
        'val_images': val_images,
        'val_labels': val_labels,
        'val_scores': val_scores,
        'val_grad_images': val_grad_images
    }
    if isinstance(train_accuracy, list):
        for tidx, (ta, va) in enumerate(zip(train_accuracy, val_accuracy)):
            train_dict['train_accuracy_%s' % tidx] = ta
            val_dict['val_accuracy_%s' % tidx] = va
    else:
        train_dict['train_accuracy_0'] = train_accuracy
        val_dict['val_accuracy_0'] = val_accuracy

    if load_and_evaluate_ckpt is not None:
        # Remove the train operation and add a ckpt pointer
        del train_dict['train_op']

    if hasattr(dataset_module, 'aux_score'):
        # Attach auxillary scores to tensor dicts
        for m in dataset_module.aux_scores:
            train_dict['train_aux_%s' % m] = train_aux[m]
            val_dict['val_aux_%s' % m] = val_aux[m]

    # Start training loop
    checkpoint_dir = dir_list['checkpoints']
    step = 0
    train_losses, train_accs, train_aux, timesteps = {}, {}, {}, {}
    val_scores, val_aux, val_labels, val_grads = {}, {}, {}, {}
    train_images, val_images = {}, {}
    train_scores, train_labels = {}, {}
    train_aux_check = np.any(['aux_score' in k for k in train_dict.keys()])
    val_aux_check = np.any(['aux_score' in k for k in val_dict.keys()])

    # Restore model
    saver.restore(sess, ckpt_file)

    # Start evaluation
    try:
        while not coord.should_stop():
            start_time = time.time()
            train_vars = sess.run(train_dict.values())
            it_train_dict = {
                k: v
                for k, v in zip(train_dict.keys(), train_vars)
            }
            duration = time.time() - start_time
            train_losses[step] = it_train_dict['train_loss']
            train_accs[step] = it_train_dict['train_accuracy_0']
            train_images[step] = it_train_dict['train_images']
            train_labels[step] = it_train_dict['train_labels']
            train_scores[step] = it_train_dict['train_scores']
            timesteps[step] = duration
            if train_aux_check:
                # Loop through to find aux scores
                it_train_aux = {
                    itk: itv
                    for itk, itv in it_train_dict.iteritems()
                    if 'aux_score' in itk
                }
                train_aux[step] = it_train_aux
            assert not np.isnan(it_train_dict['train_loss']).any(
            ), 'Model diverged with loss = NaN'
            if step % config.validation_iters == 0:
                it_val_scores, it_val_labels, it_val_aux, it_val_grads, it_val_ims = [], [], [], [], []
                for num_vals in range(config.num_validation_evals):
                    # Validation accuracy as the average of n batches
                    val_vars = sess.run(val_dict.values())
                    it_val_dict = {
                        k: v
                        for k, v in zip(val_dict.keys(), val_vars)
                    }
                    it_val_labels += [it_val_dict['val_labels']]
                    it_val_scores += [it_val_dict['val_scores']]
                    it_val_grads += [it_val_dict['val_grad_images']]
                    it_val_ims += [it_val_dict['val_images']]
                    if val_aux_check:
                        iva = {
                            itk: itv
                            for itk, itv in it_val_dict.iteritems()
                            if 'aux_score' in itk
                        }
                        it_val_aux += [iva]
                val_scores[step] = it_val_scores
                val_labels[step] = it_val_labels
                val_aux[step] = it_val_aux
                val_images[step] = it_val_grads
                val_grads[step] = it_val_ims

            # End iteration
            step += 1

    except tf.errors.OutOfRangeError:
        print 'Done with evaluation for %d epochs, %d steps.' % (config.epochs,
                                                                 step)
        print 'Saved to: %s' % checkpoint_dir
    finally:
        coord.request_stop()
    coord.join(threads)
    sess.close()

    import ipdb
    ipdb.set_trace()
    np.savez(
        'val_imgs_grads',
        val_images=val_images,  # it_val_dict['val_images'],
        val_grads=val_grads,  # it_val_dict['val_grad_images'],
        val_labels=val_labels,  # it_val_dict['val_labels'],
        val_scores=val_scores)  # it_val_dict['val_scores'][0])
Example #3
0
def main(
        experiment_name,
        list_experiments=False,
        load_and_evaluate_ckpt=None,
        placeholder_data=None,
        grad_images=False,
        gpu_device='/gpu:0'):
    """Create a tensorflow worker to run experiments in your DB."""
    if list_experiments:
        exps = db.list_experiments()
        print '_' * 30
        print 'Initialized experiments:'
        print '_' * 30
        for l in exps:
            print l.values()[0]
        print '_' * 30
        if len(exps) == 0:
            print 'No experiments found.'
        else:
            print 'You can add to the DB with: '\
                'python prepare_experiments.py --experiment=%s' % \
                exps[0].values()[0]
        return

    if experiment_name is None:
        print 'No experiment specified. Pulling one out of the DB.'
        experiment_name = db.get_experiment_name()

    # Prepare to run the model
    config = Config()
    condition_label = '%s_%s' % (experiment_name, py_utils.get_dt_stamp())
    experiment_label = '%s' % (experiment_name)
    log = logger.get(os.path.join(config.log_dir, condition_label))
    assert experiment_name is not None, 'Empty experiment name.'
    experiment_dict = experiments.experiments()[experiment_name]()
    config = add_to_config(d=experiment_dict, config=config)  # Globals
    config.load_and_evaluate_ckpt = load_and_evaluate_ckpt
    if load_and_evaluate_ckpt is not None:
        # Remove the train operation and add a ckpt pointer
        from ops import evaluation
    config, exp_params = process_DB_exps(
        experiment_name=experiment_name,
        log=log,
        config=config)  # Update config w/ DB params
    dataset_module = py_utils.import_module(
        model_dir=config.dataset_info,
        dataset=config.dataset)
    dataset_module = dataset_module.data_processing()  # hardcoded class name
    train_key = [k for k in dataset_module.folds.keys() if 'train' in k]
    if not len(train_key):
        train_key = 'train'
    else:
        train_key = train_key[0]
    train_data, train_means_image, train_means_label = get_data_pointers(
        dataset=config.dataset,
        base_dir=config.tf_records,
        cv=train_key,
        log=log)
    val_key = [k for k in dataset_module.folds.keys() if 'val' in k]
    if not len(val_key):
        val_key = 'train'
    else:
        val_key = val_key[0]
    val_data, val_means_image, val_means_label = get_data_pointers(
        dataset=config.dataset,
        base_dir=config.tf_records,
        cv=val_key,
        log=log)

    # Initialize output folders
    dir_list = {
        'checkpoints': os.path.join(
            config.checkpoints, condition_label),
        'summaries': os.path.join(
            config.summaries, condition_label),
        'condition_evaluations': os.path.join(
            config.condition_evaluations, condition_label),
        'experiment_evaluations': os.path.join(  # DEPRECIATED
            config.experiment_evaluations, experiment_label),
        'visualization': os.path.join(
            config.visualizations, condition_label),
        'weights': os.path.join(
            config.condition_evaluations, condition_label, 'weights')
    }
    [py_utils.make_dir(v) for v in dir_list.values()]

    # Prepare data loaders on the cpu
    if all(isinstance(i, list) for i in config.data_augmentations):
        if config.data_augmentations:
            config.data_augmentations = py_utils.flatten_list(
                config.data_augmentations,
                log)
    if load_and_evaluate_ckpt is not None:
        config.epochs = 1
        config.train_shuffle = False
        config.val_shuffle = False
    with tf.device('/cpu:0'):
        if placeholder_data:
            placeholder_shape = placeholder_data['train_image_shape']
            placeholder_dtype = placeholder_data['train_image_dtype']
            original_train_images = tf.placeholder(
                dtype=placeholder_dtype,
                shape=placeholder_shape,
                name='train_images')
            placeholder_shape = placeholder_data['train_label_shape']
            placeholder_dtype = placeholder_data['train_label_dtype']
            original_train_labels = tf.placeholder(
                dtype=placeholder_dtype,
                shape=placeholder_shape,
                name='train_labels')
            placeholder_shape = placeholder_data['val_image_shape']
            placeholder_dtype = placeholder_data['val_image_dtype']
            original_val_images = tf.placeholder(
                dtype=placeholder_dtype,
                shape=placeholder_shape,
                name='val_images')
            placeholder_shape = placeholder_data['val_label_shape']
            placeholder_dtype = placeholder_data['val_label_dtype']
            original_val_labels = tf.placeholder(
                dtype=placeholder_dtype,
                shape=placeholder_shape,
                name='val_labels')

            # Apply augmentations
            (
                train_images,
                train_labels
            ) = data_loader.placeholder_image_augmentations(
                images=original_train_images,
                model_input_image_size=dataset_module.model_input_image_size,
                labels=original_train_labels,
                data_augmentations=config.data_augmentations,
                batch_size=config.batch_size)
            (
                val_images,
                val_labels
            ) = data_loader.placeholder_image_augmentations(
                images=original_val_images,
                model_input_image_size=dataset_module.model_input_image_size,
                labels=original_val_labels,
                data_augmentations=config.data_augmentations,
                batch_size=config.batch_size)

            # Store in the placeholder dict
            placeholder_data['train_images'] = original_train_images
            placeholder_data['train_labels'] = original_train_labels
            placeholder_data['val_images'] = original_val_images
            placeholder_data['val_labels'] = original_val_labels
        else:
            train_images, train_labels = data_loader.inputs(
                dataset=train_data,
                batch_size=config.batch_size,
                model_input_image_size=dataset_module.model_input_image_size,
                tf_dict=dataset_module.tf_dict,
                data_augmentations=config.data_augmentations,
                num_epochs=config.epochs,
                tf_reader_settings=dataset_module.tf_reader,
                shuffle=config.shuffle_train,
                resize_output=config.resize_output)
            if hasattr(config, 'val_augmentations'):
                val_augmentations = config.val_augmentations
            else:
                val_augmentations = config.data_augmentations
            val_images, val_labels = data_loader.inputs(
                dataset=val_data,
                batch_size=config.batch_size,
                model_input_image_size=dataset_module.model_input_image_size,
                tf_dict=dataset_module.tf_dict,
                data_augmentations=val_augmentations,
                num_epochs=config.epochs,
                tf_reader_settings=dataset_module.tf_reader,
                shuffle=config.shuffle_val,
                resize_output=config.resize_output)
    log.info('Created tfrecord dataloader tensors.')

    # Load model specification
    struct_name = config.model_struct.split(os.path.sep)[-1]
    try:
        model_dict = py_utils.import_module(
            dataset=struct_name,
            model_dir=os.path.join(
                'models',
                'structs',
                experiment_name).replace(os.path.sep, '.')
            )
    except IOError:
        print 'Could not find the model structure: %s in folder %s' % (
            struct_name,
            experiment_name)

    # Inject model_dict with hyperparameters if requested
    model_dict.layer_structure = hp_opt_utils.inject_model_with_hps(
        layer_structure=model_dict.layer_structure,
        exp_params=exp_params)

    # Prepare variables for the models
    if len(dataset_module.output_size) == 2:
        log.warning(
            'Found > 1 dimension for your output size.'
            'Converting to a scalar.')
        dataset_module.output_size = np.prod(
            dataset_module.output_size)

    if hasattr(model_dict, 'output_structure'):
        # Use specified output layer
        output_structure = model_dict.output_structure
    else:
        output_structure = None

    # Correct number of output neurons if needed
    if config.dataloader_override and\
            'weights' in output_structure[-1].keys():
        output_neurons = output_structure[-1]['weights'][0]
        size_check = output_neurons != dataset_module.output_size
        fc_check = output_structure[-1]['layers'][0] == 'fc'
        if size_check and fc_check:
            output_structure[-1]['weights'][0] = dataset_module.output_size
            log.warning('Adjusted output neurons from %s to %s.' % (
                output_neurons,
                dataset_module.output_size))

    # Prepare model on GPU
    if not hasattr(dataset_module, 'input_normalization'):
        dataset_module.input_normalization = None
    with tf.device(gpu_device):
        with tf.variable_scope('cnn') as scope:
            # Training model
            model = model_utils.model_class(
                mean=train_means_image,
                training=True,
                output_size=dataset_module.output_size,
                input_normalization=dataset_module.input_normalization)
            train_scores, model_summary, _ = model.build(
                data=train_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            if grad_images:
                oh_dims = int(train_scores.get_shape()[-1])
                target_scores = tf.one_hot(train_labels, oh_dims) * train_scores
                train_gradients = tf.gradients(target_scores, train_images)[0]
            log.info('Built training model.')
            log.debug(
                json.dumps(model_summary, indent=4),
                verbose=0)
            print_model_architecture(model_summary)

            # Normalize labels on GPU if needed
            if 'normalize_labels' in exp_params.keys():
                if exp_params['normalize_labels'] == 'zscore':
                    train_labels -= train_means_label['mean']
                    train_labels /= train_means_label['std']
                    val_labels -= train_means_label['mean']
                    val_labels /= train_means_label['std']
                    log.info('Z-scoring labels.')
                elif exp_params['normalize_labels'] == 'mean':
                    train_labels -= train_means_label['mean']
                    val_labels -= val_means_label['mean']
                    log.info('Mean-centering labels.')

            # Check the shapes of labels and scores
            if not isinstance(train_scores, list):
                if len(
                        train_scores.get_shape()) != len(
                            train_labels.get_shape()):
                    train_shape = train_scores.get_shape().as_list()
                    label_shape = train_labels.get_shape().as_list()
                    val_shape = val_scores.get_shape().as_list()
                    val_label_shape = val_labels.get_shape().as_list()

                    if len(
                        train_shape) == 2 and len(
                            label_shape) == 1 and train_shape[-1] == 1:
                        train_labels = tf.expand_dims(train_labels, axis=-1)
                        val_labels = tf.expand_dims(val_labels, axis=-1)
                    elif len(
                        train_shape) == 2 and len(
                            label_shape) == 1 and train_shape[-1] == 1:
                        train_scores = tf.expand_dims(train_scores, axis=-1)
                        val_scores = tf.expand_dims(val_scores, axis=-1)

            # Prepare the loss function
            train_loss, _ = loss_utils.loss_interpreter(
                logits=train_scores,  # TODO
                labels=train_labels,
                loss_type=config.loss_function,
                weights=config.loss_weights,
                dataset_module=dataset_module)

            # Add loss tensorboard tracking
            if isinstance(train_loss, list):
                for lidx, tl in enumerate(train_loss):
                    tf.summary.scalar('training_loss_%s' % lidx, tl)
                train_loss = tf.add_n(train_loss)
            else:
                tf.summary.scalar('training_loss', train_loss)

            # Add weight decay if requested
            if len(model.regularizations) > 0:
                train_loss = loss_utils.wd_loss(
                    regularizations=model.regularizations,
                    loss=train_loss,
                    wd_penalty=config.regularization_strength)
            assert config.lr is not None, 'No learning rate.'  # TODO: Make a QC function 
            if config.lr > 1:
                old_lr = config.lr
                config.lr = loss_utils.create_lr_schedule(
                    train_batch=config.batch_size,
                    num_training=config.lr)
                config.optimizer = 'momentum'
                log.info('Forcing momentum classifier.')
            else:
                old_lr = None
            train_op = loss_utils.optimizer_interpreter(
                loss=train_loss,
                lr=config.lr,
                optimizer=config.optimizer,
                constraints=config.optimizer_constraints,
                model=model)
            log.info('Built training loss function.')

            # Add a score for the training set
            train_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,  # TODO: Attach to exp cnfg
                pred=train_scores,  # TODO
                labels=train_labels)

            # Add aux scores if requested
            train_aux = {}
            if hasattr(dataset_module, 'aux_scores'):
                for m in dataset_module.aux_scores:
                    train_aux[m] = eval_metrics.metric_interpreter(
                        metric=m,
                        pred=train_scores,
                        labels=train_labels)  # [0]  # TODO: Fix for multiloss

            # Prepare remaining tensorboard summaries
            if config.tensorboard_images:
                if len(train_images.get_shape()) == 4:
                    tf_fun.image_summaries(train_images, tag='Training images')
                if (np.asarray(
                        train_labels.get_shape().as_list()) > 1).sum() > 2:
                    tf_fun.image_summaries(
                        train_labels,
                        tag='Training_targets')
                    tf_fun.image_summaries(
                        train_scores,
                        tag='Training_predictions')
            if isinstance(train_accuracy, list):
                for tidx, ta in enumerate(train_accuracy):
                    tf.summary.scalar('training_accuracy_%s' % tidx, ta)
            else:
                tf.summary.scalar('training_accuracy', train_accuracy)
            if config.pr_curve:
                if isinstance(train_scores, list):
                    for pidx, train_score in enumerate(train_scores):
                        train_label = train_labels[:, pidx]
                        pr_summary.op(
                            tag='training_pr_%s' % pidx,
                            predictions=tf.cast(
                                tf.argmax(
                                    train_score,
                                    axis=-1),
                                tf.float32),
                            labels=tf.cast(train_label, tf.bool),
                            display_name='training_precision_recall_%s' % pidx)
                else:
                    pr_summary.op(
                        tag='training_pr',
                        predictions=tf.cast(
                            tf.argmax(
                                train_scores,
                                axis=-1),
                            tf.float32),
                        labels=tf.cast(train_labels, tf.bool),
                        display_name='training_precision_recall')
            log.info('Added training summaries.')

        with tf.variable_scope('cnn', tf.AUTO_REUSE) as scope:
            # Validation model
            scope.reuse_variables()
            val_model = model_utils.model_class(
                mean=train_means_image,  # Normalize with train data
                training=False,
                output_size=dataset_module.output_size,
                input_normalization=dataset_module.input_normalization)
            val_scores, _, _ = val_model.build(  # Ignore summary
                data=val_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            if grad_images:
                oh_dims = int(val_scores.get_shape()[-1])
                target_scores = tf.one_hot(val_labels, oh_dims) * val_scores
                val_gradients = tf.gradients(target_scores, val_images)[0]
            log.info('Built validation model.')

            # Check the shapes of labels and scores
            val_loss, _ = loss_utils.loss_interpreter(
                logits=val_scores,
                labels=val_labels,
                loss_type=config.loss_function,
                weights=config.loss_weights,
                dataset_module=dataset_module)

            # Add loss tensorboard tracking
            if isinstance(val_loss, list):
                for lidx, tl in enumerate(val_loss):
                    tf.summary.scalar('validation_loss_%s' % lidx, tl)
                val_loss = tf.add_n(val_loss)
            else:
                tf.summary.scalar('validation_loss', val_loss)

            # Add a score for the validation set
            val_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,  # TODO
                pred=val_scores,
                labels=val_labels)

            # Add aux scores if requested
            val_aux = {}
            if hasattr(dataset_module, 'aux_scores'):
                for m in dataset_module.aux_scores:
                    val_aux[m] = eval_metrics.metric_interpreter(
                        metric=m,
                        pred=val_scores,
                        labels=val_labels)  # [0]  # TODO: Fix for multiloss

            # Prepare tensorboard summaries
            if config.tensorboard_images:
                if len(val_images.get_shape()) == 4:
                    tf_fun.image_summaries(
                        val_images,
                        tag='Validation')
                if (np.asarray(
                        val_labels.get_shape().as_list()) > 1).sum() > 2:
                    tf_fun.image_summaries(
                        val_labels,
                        tag='Validation_targets')
                    tf_fun.image_summaries(
                        val_scores,
                        tag='Validation_predictions')
            if isinstance(val_accuracy, list):
                for vidx, va in enumerate(val_accuracy):
                    tf.summary.scalar('validation_accuracy_%s' % vidx, va)
            else:
                tf.summary.scalar('validation_accuracy', val_accuracy)
            if config.pr_curve:
                if isinstance(val_scores, list):
                    for pidx, val_score in enumerate(val_scores):
                        val_label = val_labels[:, pidx]
                        pr_summary.op(
                            tag='validation_pr_%s' % pidx,
                            predictions=tf.cast(
                                tf.argmax(
                                    val_score,
                                    axis=-1),
                                tf.float32),
                            labels=tf.cast(val_label, tf.bool),
                            display_name='validation_precision_recall_%s' %
                            pidx)
                else:
                    pr_summary.op(
                        tag='validation_pr',
                        predictions=tf.cast(
                            tf.argmax(
                                val_scores,
                                axis=-1),
                            tf.float32),
                        labels=tf.cast(val_labels, tf.bool),
                        display_name='validation_precision_recall')
            log.info('Added validation summaries.')

    # Set up summaries and saver
    if not hasattr(config, 'max_to_keep'):
        config.max_to_keep = None
    saver = tf.train.Saver(
        var_list=tf.global_variables(),
        max_to_keep=config.max_to_keep)
    summary_op = tf.summary.merge_all()

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(
            tf.global_variables_initializer(),
            tf.local_variables_initializer())
        )
    summary_writer = tf.summary.FileWriter(dir_list['summaries'], sess.graph)

    # Set up exemplar threading
    if placeholder_data:
        coord, threads = None, None
    else:
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Create dictionaries of important training and validation information
    train_dict = {
        'train_loss': train_loss,
        'train_images': train_images,
        'train_labels': train_labels,
        'train_op': train_op,
        'train_scores': train_scores
    }
    val_dict = {
        'val_loss': val_loss,
        'val_images': val_images,
        'val_labels': val_labels,
        'val_scores': val_scores,
    }

    if grad_images:
        train_dict['train_gradients'] = train_gradients
        val_dict['val_gradients'] = val_gradients

    if isinstance(train_accuracy, list):
        for tidx, (ta, va) in enumerate(zip(train_accuracy, val_accuracy)):
            train_dict['train_accuracy_%s' % tidx] = ta
            val_dict['val_accuracy_%s' % tidx] = va
    else:
        train_dict['train_accuracy_0'] = train_accuracy
        val_dict['val_accuracy_0'] = val_accuracy

    if load_and_evaluate_ckpt is not None:
        # Remove the train operation and add a ckpt pointer
        del train_dict['train_op']

    if hasattr(dataset_module, 'aux_score'):
        # Attach auxillary scores to tensor dicts
        for m in dataset_module.aux_scores:
            train_dict['train_aux_%s' % m] = train_aux[m]
            val_dict['val_aux_%s' % m] = val_aux[m]

    # Start training loop
    if old_lr is not None:
        config.lr = old_lr
    np.save(
        os.path.join(
            dir_list['condition_evaluations'], 'training_config_file'),
        config)
    log.info('Starting training')
    if load_and_evaluate_ckpt is not None:
        return evaluation.evaluation_loop(
            config=config,
            db=db,
            coord=coord,
            sess=sess,
            summary_op=summary_op,
            summary_writer=summary_writer,
            saver=saver,
            threads=threads,
            summary_dir=dir_list['summaries'],
            checkpoint_dir=dir_list['checkpoints'],
            weight_dir=dir_list['weights'],
            train_dict=train_dict,
            val_dict=val_dict,
            train_model=model,
            val_model=val_model,
            exp_params=exp_params,
            placeholder_data=placeholder_data)
    else:
        output_dict = training.training_loop(
            config=config,
            db=db,
            coord=coord,
            sess=sess,
            summary_op=summary_op,
            summary_writer=summary_writer,
            saver=saver,
            threads=threads,
            summary_dir=dir_list['summaries'],
            checkpoint_dir=dir_list['checkpoints'],
            weight_dir=dir_list['weights'],
            train_dict=train_dict,
            val_dict=val_dict,
            train_model=model,
            val_model=val_model,
            exp_params=exp_params)

    log.info('Finished training.')
    model_name = config.model_struct.replace('/', '_')
    if output_dict is not None:
        py_utils.save_npys(
            data=output_dict,
            model_name=model_name,
            output_string=dir_list['experiment_evaluations'])
Example #4
0
def plot_fits(
        experiment='760_cells_2017_11_04_16_29_09',
        query_db=False,
        num_models=3,
        template_exp='ALLEN_selected_cells_1',
        process_pnodes=False,
        allen_dir='/home/drew/Documents/Allen_Brain_Observatory',
        output_dir='tests/ALLEN_files',
        stimulus_type='tfrecord',
        top_n=1,
        grad='lrp',
        target_layer='conv1_1',  # conv1_1, sep_conv1_1, dog1_1
        target_model='conv2d'):  # conv2d, sep_conv2d, dog
    """Plot fits across the RF.
    experiment: Name of Allen experiment you're plotting.
    query_db: Use data from DB versus data in Numpys.
    num_models: The number of architectures you're testing.
    template_exp: The name of the contextual_circuit model template used."""
    sys.path.append(allen_dir)
    from allen_config import Allen_Brain_Observatory_Config
    if process_pnodes:
        from pnodes_declare_datasets_loop import query_hp_hist, sel_exp_query
    else:
        from declare_datasets_loop import query_hp_hist, sel_exp_query
    config = Config()
    main_config = Allen_Brain_Observatory_Config()
    db_config = credentials.postgresql_connection()
    files = glob(
        os.path.join(
            allen_dir,
            main_config.multi_exps,
            experiment, '*.npz'))
    assert len(files), 'Couldn\'t find files.'
    out_data, xs, ys = [], [], []
    perfs, model_types, exps, arg_perf = [], [], [], []
    count = 0
    for f in files:
        data = np.load(f)
        d = {
            'x': data['rf_data'].item()['on_center_x'],
            'y': data['rf_data'].item()['on_center_y'],
            # x: files['dataset_method'].item()['x_min'],
            # y: files['dataset_method'].item()['y_min'],
        }
        exp_name = {
            'experiment_name': data['dataset_method'].item()[
                'experiment_name']}
        if query_db:
            perf = query_hp_hist(
                exp_name['experiment_name'],
                db_config=db_config)
            if perf is None:
                print 'No fits for: %s' % exp_name['experiment_name']
            else:
                raise NotImplementedError
                d['perf'] = perf
                d['max_val'] = np.max(perf)
                out_data += [d]
                xs += [np.round(d['x'])]
                ys += [np.round(d['y'])]
                perfs += [np.max(d['perf'])]
                count += 1
        else:
            data_files = glob(
                os.path.join(
                    main_config.ccbp_exp_evals,
                    exp_name['experiment_name'],
                    '*val_losses.npy'))  # Scores has preds, labels has GT
            for gd in data_files:
                mt = gd.split(
                    os.path.sep)[-1].split(
                        template_exp + '_')[-1].split('_' + 'val')[0]
                it_data = np.load(gd).item()
                sinds = np.asarray(it_data.keys())[np.argsort(it_data.keys())]
                sit_data = [it_data[idx] for idx in sinds]
                d['perf'] = sit_data
                d['max_val'] = np.max(sit_data)
                d['max_idx'] = np.argmax(sit_data)
                d['mt'] = mt
                out_data += [d]
                xs += [np.round(d['x'])]
                ys += [np.round(d['y'])]
                perfs += [np.max(sit_data)]
                arg_perf += [np.argmax(sit_data)]
                exps += [gd.split(os.path.sep)[-2]]
                model_types += [mt]
                count += 1

    # Package as a df
    xs = np.round(np.asarray(xs)).astype(int)
    ys = np.round(np.asarray(ys)).astype(int)
    perfs = np.asarray(perfs)
    arg_perf = np.asarray(arg_perf)
    exps = np.asarray(exps)
    model_types = np.asarray(model_types)

    # Filter to only keep top-scoring values at each x/y (dirty trick)
    fxs, fys, fperfs, fmodel_types, fexps, fargs = [], [], [], [], [], []
    xys = np.vstack((xs, ys)).transpose()
    cxy = np.ascontiguousarray(  # Unique rows
        xys).view(
        np.dtype((np.void, xys.dtype.itemsize * xys.shape[1])))
    _, idx = np.unique(cxy, return_index=True)
    uxys = xys[idx]
    scores = []
    for xy in uxys:
        sel_idx = (xys == xy).sum(axis=-1) == 2
        sperfs = perfs[sel_idx]
        sexps = exps[sel_idx]
        sargs = arg_perf[sel_idx]
        sel_mts = model_types[sel_idx]
        # Only get top conv/sep spots
        sperfs = sperfs[sel_mts != 'dog']
        sperfs = sperfs[sel_mts != 'DoG']
        scores += [sperfs.mean() / sperfs.std()]
    best_fits = np.argmax(np.asarray(scores))
    xs = np.asarray([uxys[best_fits][0]])
    ys = np.asarray([uxys[best_fits][1]])
    sel_idx = (xys == uxys[best_fits]).sum(axis=-1) == 2
    perfs = np.asarray(perfs[sel_idx])
    exps = np.asarray(exps[sel_idx])
    model_types = np.asarray(model_types[sel_idx])
    umt, model_types_inds = np.unique(model_types, return_inverse=True)

    # Get weights for the top-n fitting models of each type
    it_perfs = perfs[model_types == target_model]
    it_exps = exps[model_types == target_model]
    # it_args = arg_perf[model_types == target_model]
    sorted_perfs = np.argsort(it_perfs)[::-1][:top_n]
    for idx in sorted_perfs:
        perf = sel_exp_query(
            experiment_name=it_exps[idx],
            model=target_model,
            db_config=db_config)
        # perf_steps = np.argsort([v['training_step'] for v in perf])[::-1]
        perf_steps = [v['validation_loss'] for v in perf]
        max_score = np.max(perf_steps)
        arg_perf_steps = np.argmax(perf_steps)
        sel_model = perf[arg_perf_steps]  # perf_steps[it_args[idx]]]
        print 'Using %s' % sel_model
        model_file = sel_model['ckpt_file'].split('.')[0]
        model_ckpt = '%s.ckpt-%s' % (
            model_file,
            model_file.split(os.path.sep)[-1].split('_')[-1])
        model_meta = '%s.meta' % model_ckpt

        # Pull stimuli
        stim_dir = os.path.join(
            main_config.tf_record_output,
            sel_model['experiment_name'])
        stim_files = glob(stim_dir + '*')
        stim_meta_file = [x for x in stim_files if 'meta' in x][0]
        # stim_val_data = [x for x in stim_files if 'val.tfrecords' in x][0]
        stim_val_data = [x for x in stim_files if 'train.tfrecords' in x][0]
        stim_val_mean = [x for x in stim_files if 'train_means' in x][0]
        assert stim_meta_file is not None
        assert stim_val_data is not None
        assert stim_val_mean is not None
        stim_meta_data = np.load(stim_meta_file).item()
        rf_stim_meta_data = stim_meta_data['rf_data']
        stim_mean_data = np.load(
            stim_val_mean).items()[0][1].item()['image']['mean']

        # Store sparse noise for reference
        sparse_rf_on = {
            'center_x': rf_stim_meta_data.get('on_center_x', None),
            'center_y': rf_stim_meta_data.get('on_center_y', None),
            'width_x': rf_stim_meta_data.get('on_width_x', None),
            'width_y': rf_stim_meta_data.get('on_width_y', None),
            'distance': rf_stim_meta_data.get('on_distance', None),
            'area': rf_stim_meta_data.get('on_area', None),
            'rotation': rf_stim_meta_data.get('on_rotation', None),
        }
        sparse_rf_off = {
            'center_x': rf_stim_meta_data.get('off_center_x', None),
            'center_y': rf_stim_meta_data.get('off_center_y', None),
            'width_x': rf_stim_meta_data.get('off_width_x', None),
            'width_y': rf_stim_meta_data.get('off_width_y', None),
            'distance': rf_stim_meta_data.get('off_distance', None),
            'area': rf_stim_meta_data.get('off_area', None),
            'rotation': rf_stim_meta_data.get('off_rotation', None),
        }
        sparse_rf = {'on': sparse_rf_on, 'off': sparse_rf_off}

        # Pull responses
        dataset_module = py_utils.import_module(
            model_dir=config.dataset_info,
            dataset=sel_model['experiment_name'])
        dataset_module = dataset_module.data_processing()
        with tf.device('/cpu:0'):
            if stimulus_type == 'sparse_noise':
                pass
            elif stimulus_type == 'drifting_grating':
                pass
            elif stimulus_type == 'tfrecord':
                val_images, val_labels = data_loader.inputs(
                    dataset=stim_val_data,
                    batch_size=1,
                    model_input_image_size=dataset_module.model_input_image_size,
                    tf_dict=dataset_module.tf_dict,
                    data_augmentations=[None],  # dataset_module.preprocess,
                    num_epochs=1,
                    tf_reader_settings=dataset_module.tf_reader,
                    shuffle=False
                )

        # Mean normalize
        log = logger.get(os.path.join(output_dir, 'sta_logs', target_model))
        data_dir = os.path.join(output_dir, 'data', target_model)
        py_utils.make_dir(data_dir)
        sys.path.append(os.path.join('models', 'structs', sel_model['experiment_name']))
        model_dict = __import__(target_model) 
        if hasattr(model_dict, 'output_structure'):
            # Use specified output layer
            output_structure = model_dict.output_structure
        else:
            output_structure = None
        model = model_utils.model_class(
            mean=stim_mean_data,
            training=True,  # FIXME
            output_size=dataset_module.output_size)
        with tf.device('/gpu:0'):
            with tf.variable_scope('cnn') as scope:
                val_scores, model_summary = model.build(
                    data=val_images,
                    layer_structure=model_dict.layer_structure,
                    output_structure=output_structure,
                    log=log,
                    tower_name='cnn')
                if grad == 'vanilla':
                    grad_image = tf.gradients(model.output, val_images)[0]
                elif grad == 'lrp':
                    eval_graph = tf.Graph()
                    with eval_graph.as_default():
                        with eval_graph.gradient_override_map(
                            {'Relu': 'GradLRP'}):
                            grad_image = tf.gradients(model.output, val_images)[0]
                elif grad == 'cam':
                    eval_graph = tf.Graph()
                    with eval_graph.as_default():
                        with eval_graph.gradient_override_map(
                            {'Relu': 'GuidedRelu'}):
                            grad_image = tf.gradients(model.output, val_images)[0]
                else:
                    raise NotImplementedError
        print(json.dumps(model_summary, indent=4))

        # Set up summaries and saver
        saver = tf.train.Saver(tf.global_variables())
        summary_op = tf.summary.merge_all()

        # Initialize the graph
        sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

        # Need to initialize both of these if supplying num_epochs to inputs
        sess.run(
            tf.group(
                tf.global_variables_initializer(),
                tf.local_variables_initializer())
            )
        saver.restore(sess, model_ckpt)

        # Set up exemplar threading
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        if target_model == 'conv2d':
            fname = [
                x for x in tf.global_variables()
                if 'conv1_1_filters:0' in x.name]
        elif target_model == 'sep_conv2d':
            fname = [
                x for x in tf.global_variables()
                if 'sep_conv1_1_filters:0' in x.name]
        elif target_model == 'dog' or target_model == 'DoG':
            fname = [
                x for x in tf.global_variables()
                if 'dog1_1_filters:0' in x.name]
        else:
            raise NotImplementedError
        val_tensors = {
            'images': val_images,
            'labels': val_labels,
            'filts': fname,
            'responses': model.output,  # model[target_layer],
            'grads': grad_image
        }
        all_images, all_preds, all_grads, all_responses = [], [], [], []
        step = 0
        try:
            while not coord.should_stop():
                val_vals = sess.run(val_tensors.values())
                val_dict = {k: v for k, v in zip(val_tensors.keys(), val_vals)}
                all_images += [val_dict['images']]
                all_responses += [val_dict['responses']]
                all_preds += [val_dict['labels'].squeeze()]
                all_grads += [val_dict['grads'].squeeze()]
                print 'Finished step %s' % step
                step += 1
        except:
            print 'Finished tfrecords'
        finally:
            coord.request_stop()
        coord.join(threads)
        sess.close()

        # Process and save data
        # if target_model != 'dog':
        #     filters = val_dict['filts'][0].squeeze().transpose(2, 0, 1)
        all_images = np.concatenate(all_images).squeeze()
        all_grads = np.asarray(all_grads)
        all_preds = np.asarray(all_preds).reshape(-1, 1)
        all_responses = np.asarray(all_responses).squeeze()

        np.savez(
            os.path.join(data_dir, 'data'),
            images=all_images,
            pred=all_preds,
            # filters=filters,
            grads=all_grads)
        # if target_model != 'dog':
        #     save_mosaic(
        #         maps=filters,  # [0].squeeze().transpose(2, 0, 1),
        #         output=os.path.join(data_dir, '%s_filters' % target_layer),
        #         rc=8,
        #         cc=4,
        #         title='%s filters' % (
        #             target_layer))
        print 'Complete.'
Example #5
0
def plot_fits(
    experiment='760_cells_2017_11_04_16_29_09',
    query_db=False,
    template_exp='ALLEN_selected_cells_1',
    process_pnodes=False,
    allen_dir='/home/drew/Documents/Allen_Brain_Observatory',
    output_dir='tests/ALLEN_files',
    stimulus_dir='/media/data_cifs/AllenData/DataForTrain/all_stimulus_template',
    stimulus_type='tfrecord',
    top_n=100,
    recalc=False,
    preload_stim=False,
    target_layer='conv1_1',  # conv1_1, sep_conv1_1, dog1_1
    target_model='conv2d'):  # conv2d, sep_conv2d, dog
    """Plot fits across the RF.
    experiment: Name of Allen experiment you're plotting.
    query_db: Use data from DB versus data in Numpys.
    num_models: The number of architectures you're testing.
    template_exp: The name of the contextual_circuit model template used."""
    sys.path.append(allen_dir)
    from allen_config import Allen_Brain_Observatory_Config
    if process_pnodes:
        from pnodes_declare_datasets_loop import query_hp_hist, sel_exp_query
    else:
        from declare_datasets_loop import query_hp_hist, sel_exp_query
    config = Config()
    main_config = Allen_Brain_Observatory_Config()
    db_config = credentials.postgresql_connection()
    files = glob(
        os.path.join(allen_dir, main_config.multi_exps, experiment, '*.npz'))
    assert len(files), 'Couldn\'t find files.'
    out_data, xs, ys = [], [], []
    perfs, model_types, exps, arg_perf = [], [], [], []
    count = 0
    for f in files:
        data = np.load(f)
        d = {
            'x': data['rf_data'].item()['on_center_x'],
            'y': data['rf_data'].item()['on_center_y'],
            # x: files['dataset_method'].item()['x_min'],
            # y: files['dataset_method'].item()['y_min'],
        }
        exp_name = {
            'experiment_name': data['dataset_method'].item()['experiment_name']
        }
        if query_db:
            perf = query_hp_hist(exp_name['experiment_name'],
                                 db_config=db_config)
            if perf is None:
                print 'No fits for: %s' % exp_name['experiment_name']
            else:
                raise NotImplementedError
                d['perf'] = perf
                d['max_val'] = np.max(perf)
                out_data += [d]
                xs += [np.round(d['x'])]
                ys += [np.round(d['y'])]
                perfs += [np.max(d['perf'])]
                count += 1
        else:
            data_files = glob(
                os.path.join(
                    main_config.ccbp_exp_evals, exp_name['experiment_name'],
                    '*val_losses.npy'))  # Scores has preds, labels has GT
            score_files = glob(
                os.path.join(
                    main_config.ccbp_exp_evals, exp_name['experiment_name'],
                    '*val_scores.npy'))  # Scores has preds, labels has GT
            lab_files = glob(
                os.path.join(
                    main_config.ccbp_exp_evals, exp_name['experiment_name'],
                    '*val_labels.npy'))  # Scores has preds, labels has GT
            for gd, sd, ld in zip(data_files, score_files, lab_files):
                mt = gd.split(os.path.sep)[-1].split(template_exp +
                                                     '_')[-1].split('_' +
                                                                    'val')[0]
                if not recalc:
                    it_data = np.load(gd).item()
                else:
                    lds = np.load(ld).item()
                    sds = np.load(sd).item()
                    it_data = {
                        k: np.corrcoef(lds[k], sds[k])[0, 1]
                        for k in sds.keys()
                    }
                sinds = np.asarray(it_data.keys())[np.argsort(it_data.keys())]
                sit_data = [it_data[idx] for idx in sinds]
                d['perf'] = sit_data
                d['max_val'] = np.max(sit_data)
                d['max_idx'] = np.argmax(sit_data)
                d['mt'] = mt
                out_data += [d]
                xs += [np.round(d['x'])]
                ys += [np.round(d['y'])]
                perfs += [np.max(sit_data)]
                arg_perf += [np.argmax(sit_data)]
                exps += [gd.split(os.path.sep)[-2]]
                model_types += [mt]
                count += 1

    # Package as a df
    xs = np.round(np.asarray(xs)).astype(int)
    ys = np.round(np.asarray(ys)).astype(int)
    perfs = np.asarray(perfs)
    arg_perf = np.asarray(arg_perf)
    exps = np.asarray(exps)
    model_types = np.asarray(model_types)

    # Filter to only keep top-scoring values at each x/y (dirty trick)
    fxs, fys, fperfs, fmodel_types, fexps, fargs = [], [], [], [], [], []
    xys = np.vstack((xs, ys)).transpose()
    cxy = np.ascontiguousarray(  # Unique rows
        xys).view(np.dtype((np.void, xys.dtype.itemsize * xys.shape[1])))
    _, idx = np.unique(cxy, return_index=True)
    uxys = xys[idx]
    for xy in uxys:
        sel_idx = (xys == xy).sum(axis=-1) == 2
        sperfs = perfs[sel_idx]
        sexps = exps[sel_idx]
        sargs = arg_perf[sel_idx]
        sel_mts = model_types[sel_idx]
        bp = np.argmax(sperfs)
        fxs += [xy[0]]
        fys += [xy[1]]
        fperfs += [sperfs[bp]]
        fargs += [sargs[bp]]
        fmodel_types += [sel_mts[bp]]
        fexps += [sexps[bp]]
    xs = np.asarray(fxs)
    ys = np.asarray(fys)
    perfs = np.asarray(fperfs)
    arg_perf = np.asarray(fargs)
    exps = np.asarray(fexps)
    model_types = np.asarray(fmodel_types)
    umt, model_types_inds = np.unique(model_types, return_inverse=True)

    # Get weights for the top-n fitting models of each type
    it_perfs = perfs[model_types == target_model]
    it_exps = exps[model_types == target_model]
    # it_args = arg_perf[model_types == target_model]
    sorted_perfs = np.argsort(it_perfs)[::-1][:top_n]
    perf = sel_exp_query(experiment_name=it_exps[sorted_perfs[0]],
                         model=target_model,
                         db_config=db_config)
    dummy_sel_model = perf[-1]
    print 'Using %s' % dummy_sel_model
    model_file = dummy_sel_model['ckpt_file'].split('.')[0]
    model_ckpt = '%s.ckpt-%s' % (model_file, model_file.split(
        os.path.sep)[-1].split('_')[-1])
    model_meta = '%s.meta' % model_ckpt

    # Pull responses
    dataset_module = py_utils.import_module(
        model_dir=config.dataset_info,
        dataset=dummy_sel_model['experiment_name'])
    dataset_module = dataset_module.data_processing()
    with tf.device('/cpu:0'):
        val_images = tf.placeholder(tf.float32,
                                    shape=[1] +
                                    [x for x in dataset_module.im_size])

    # Pull stimuli
    stim_dir = os.path.join(main_config.tf_record_output,
                            dummy_sel_model['experiment_name'])
    stim_files = glob(stim_dir + '*')
    stim_meta_file = [x for x in stim_files if 'meta' in x][0]
    stim_val_data = [x for x in stim_files if 'train.tfrecords' in x][0]
    stim_val_mean = [x for x in stim_files if 'train_means' in x][0]
    assert stim_meta_file is not None
    assert stim_val_data is not None
    assert stim_val_mean is not None
    stim_meta_data = np.load(stim_meta_file).item()
    rf_stim_meta_data = stim_meta_data['rf_data']
    stim_mean_data = np.load(
        stim_val_mean).items()[0][1].item()['image']['mean']

    # Mean normalize
    log = logger.get(os.path.join(output_dir, 'sta_logs', target_model))
    data_dir = os.path.join(output_dir, 'data', target_model)
    py_utils.make_dir(data_dir)
    sys.path.append(
        os.path.join('models', 'structs', dummy_sel_model['experiment_name']))
    model_dict = __import__(target_model)
    if hasattr(model_dict, 'output_structure'):
        # Use specified output layer
        output_structure = model_dict.output_structure
    else:
        output_structure = None
    model = model_utils.model_class(
        mean=stim_mean_data,
        training=True,  # FIXME
        output_size=dataset_module.output_size)
    with tf.device('/gpu:0'):
        with tf.variable_scope('cnn') as scope:
            val_scores, model_summary = model.build(
                data=val_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            grad_image = tf.gradients(model.output, val_images)[0]
    print(json.dumps(model_summary, indent=4))

    # Set up summaries and saver
    saver = tf.train.Saver(tf.global_variables())
    summary_op = tf.summary.merge_all()

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(tf.global_variables_initializer(),
                 tf.local_variables_initializer()))
    all_filters = []
    all_rfs = []
    max_scores = []
    for idx in sorted_perfs:
        perf = sel_exp_query(experiment_name=it_exps[idx],
                             model=target_model,
                             db_config=db_config)
        # perf_steps = np.argsort([v['training_step'] for v in perf])[::-1]
        perf_steps = [v['validation_loss'] for v in perf]
        max_score = np.max(perf_steps)
        arg_perf_steps = np.argmax(perf_steps)
        sel_model = perf[arg_perf_steps]  # perf_steps[it_args[idx]]]
        print 'Using %s' % sel_model
        model_file = sel_model['ckpt_file'].split('.')[0]
        model_ckpt = '%s.ckpt-%s' % (model_file, model_file.split(
            os.path.sep)[-1].split('_')[-1])
        model_meta = '%s.meta' % model_ckpt

        # Store sparse noise for reference
        stim_dir = os.path.join(main_config.tf_record_output,
                                sel_model['experiment_name'])
        stim_files = glob(stim_dir + '*')
        stim_meta_file = [x for x in stim_files if 'meta' in x][0]
        stim_val_data = [x for x in stim_files if 'train.tfrecords' in x][0]
        stim_val_mean = [x for x in stim_files if 'train_means' in x][0]
        assert stim_meta_file is not None
        assert stim_val_data is not None
        assert stim_val_mean is not None
        stim_meta_data = np.load(stim_meta_file).item()
        rf_stim_meta_data = stim_meta_data['rf_data']
        stim_mean_data = np.load(
            stim_val_mean).items()[0][1].item()['image']['mean']

        rf_stim_meta_data = rf_stim_meta_data.values()[0][0]
        sparse_rf_on = {
            'center_x': rf_stim_meta_data.get('on_center_x', None),
            'center_y': rf_stim_meta_data.get('on_center_y', None),
            'width_x': rf_stim_meta_data.get('on_width_x', None),
            'width_y': rf_stim_meta_data.get('on_width_y', None),
            'distance': rf_stim_meta_data.get('on_distance', None),
            'area': rf_stim_meta_data.get('on_area', None),
            'rotation': rf_stim_meta_data.get('on_rotation', None),
        }
        sparse_rf_off = {
            'center_x': rf_stim_meta_data.get('off_center_x', None),
            'center_y': rf_stim_meta_data.get('off_center_y', None),
            'width_x': rf_stim_meta_data.get('off_width_x', None),
            'width_y': rf_stim_meta_data.get('off_width_y', None),
            'distance': rf_stim_meta_data.get('off_distance', None),
            'area': rf_stim_meta_data.get('off_area', None),
            'rotation': rf_stim_meta_data.get('off_rotation', None),
        }
        sparse_rf = {'on': sparse_rf_on, 'off': sparse_rf_off}

        # Set up exemplar threading
        if target_model == 'conv2d':
            fname = [
                x for x in tf.global_variables()
                if 'conv1_1_filters:0' in x.name
            ]
        elif target_model == 'sep_conv2d':
            fname = [
                x for x in tf.global_variables()
                if 'sep_conv1_1_filters:0' in x.name
            ]
        elif target_model == 'dog' or target_model == 'DoG':
            fname = [
                x for x in tf.global_variables()
                if 'dog1_1_filters:0' in x.name
            ]
        else:
            raise NotImplementedError

        print 'Using %s' % sel_model
        model_file = sel_model['ckpt_file'].split('.')[0]
        model_ckpt = '%s.ckpt-%s' % (model_file, model_file.split(
            os.path.sep)[-1].split('_')[-1])
        saver.restore(sess, model_ckpt)
        all_filters += [sess.run(fname)]
        all_rfs += [sparse_rf]
        max_scores += [max_score]
    np.savez('tests/ALLEN_files/filters/%s_%s_recalc_%s' %
             (experiment, target_model, recalc),
             rfs=all_rfs,
             perf=max_scores,
             filters=all_filters)
    print 'SAVED'
def plot_fits(
        experiment='760_cells_2017_11_04_16_29_09',
        query_db=False,
        num_models=3,
        template_exp='ALLEN_selected_cells_1',
        process_pnodes=False,
        allen_dir='/home/drew/Documents/Allen_Brain_Observatory',
        output_dir='tests/ALLEN_files',
        stimulus_dir='/media/data_cifs/AllenData/DataForTrain/all_stimulus_template',
        stimulus_type='tfrecord',
        top_n=0,
        preload_stim=False,
        target_layer='conv1_1',  # conv1_1, sep_conv1_1, dog1_1
        target_model='conv2d'):  # conv2d, sep_conv2d, dog
    """Plot fits across the RF.
    experiment: Name of Allen experiment you're plotting.
    query_db: Use data from DB versus data in Numpys.
    num_models: The number of architectures you're testing.
    template_exp: The name of the contextual_circuit model template used."""
    sys.path.append(allen_dir)
    from allen_config import Allen_Brain_Observatory_Config
    if process_pnodes:
        from pnodes_declare_datasets_loop import query_hp_hist, sel_exp_query
    else:
        from declare_datasets_loop import query_hp_hist, sel_exp_query
    config = Config()
    main_config = Allen_Brain_Observatory_Config()
    db_config = credentials.postgresql_connection()
    files = glob(
        os.path.join(
            allen_dir,
            main_config.multi_exps,
            experiment, '*.npz'))
    assert len(files), 'Couldn\'t find files.'
    out_data, xs, ys = [], [], []
    perfs, model_types, exps, arg_perf = [], [], [], []
    count = 0
    for f in files:
        data = np.load(f)
        d = {
            'x': data['rf_data'].item()['on_center_x'],
            'y': data['rf_data'].item()['on_center_y'],
            # x: files['dataset_method'].item()['x_min'],
            # y: files['dataset_method'].item()['y_min'],
        }
        exp_name = {
            'experiment_name': data['dataset_method'].item()[
                'experiment_name']}
        if query_db:
            perf = query_hp_hist(
                exp_name['experiment_name'],
                db_config=db_config)
            if perf is None:
                print 'No fits for: %s' % exp_name['experiment_name']
            else:
                raise NotImplementedError
                d['perf'] = perf
                d['max_val'] = np.max(perf)
                out_data += [d]
                xs += [np.round(d['x'])]
                ys += [np.round(d['y'])]
                perfs += [np.max(d['perf'])]
                count += 1
        else:
            data_files = glob(
                os.path.join(
                    main_config.ccbp_exp_evals,
                    exp_name['experiment_name'],
                    '*val_losses.npy'))  # Scores has preds, labels has GT
            for gd in data_files:
                mt = gd.split(
                    os.path.sep)[-1].split(
                        template_exp + '_')[-1].split('_' + 'val')[0]
                it_data = np.load(gd).item()
                sinds = np.asarray(it_data.keys())[np.argsort(it_data.keys())]
                sit_data = [it_data[idx] for idx in sinds]
                d['perf'] = sit_data
                d['max_val'] = np.max(sit_data)
                d['max_idx'] = np.argmax(sit_data)
                d['mt'] = mt
                out_data += [d]
                xs += [np.round(d['x'])]
                ys += [np.round(d['y'])]
                perfs += [np.max(sit_data)]
                arg_perf += [np.argmax(sit_data)]
                exps += [gd.split(os.path.sep)[-2]]
                model_types += [mt]
                count += 1

    # Package as a df
    xs = np.round(np.asarray(xs)).astype(int)
    ys = np.round(np.asarray(ys)).astype(int)
    perfs = np.asarray(perfs)
    arg_perf = np.asarray(arg_perf)
    exps = np.asarray(exps)
    model_types = np.asarray(model_types)

    # Filter to only keep top-scoring values at each x/y (dirty trick)
    fxs, fys, fperfs, fmodel_types, fexps, fargs = [], [], [], [], [], []
    xys = np.vstack((xs, ys)).transpose()
    cxy = np.ascontiguousarray(  # Unique rows
        xys).view(
        np.dtype((np.void, xys.dtype.itemsize * xys.shape[1])))
    _, idx = np.unique(cxy, return_index=True)
    uxys = xys[idx]
    for xy in uxys:
        sel_idx = (xys == xy).sum(axis=-1) == 2
        sperfs = perfs[sel_idx]
        sexps = exps[sel_idx]
        sargs = arg_perf[sel_idx]
        sel_mts = model_types[sel_idx]
        bp = np.argmax(sperfs)
        fxs += [xy[0]]
        fys += [xy[1]]
        fperfs += [sperfs[bp]]
        fargs += [sargs[bp]]
        fmodel_types += [sel_mts[bp]]
        fexps += [sexps[bp]]
    xs = np.asarray(fxs)
    ys = np.asarray(fys)
    perfs = np.asarray(fperfs)
    arg_perf = np.asarray(fargs)
    exps = np.asarray(fexps)
    model_types = np.asarray(fmodel_types)
    umt, model_types_inds = np.unique(model_types, return_inverse=True)

    # Get weights for the top-n fitting models of each type
    it_perfs = perfs[model_types == target_model]
    it_exps = exps[model_types == target_model]
    # it_args = arg_perf[model_types == target_model]
    # sorted_perfs = np.argsort(it_perfs)[::-1][:top_n]
    sorted_perfs = [np.argsort(it_perfs)[::-1][top_n]]
    for idx in sorted_perfs:
        perf = sel_exp_query(
            experiment_name=it_exps[idx],
            model=target_model,
            db_config=db_config)
        # perf_steps = np.argsort([v['training_step'] for v in perf])[::-1]
        perf_steps = [v['validation_loss'] for v in perf]
        max_score = np.max(perf_steps)
        arg_perf_steps = np.argmax(perf_steps)
        sel_model = perf[arg_perf_steps]  # perf_steps[it_args[idx]]]
        print 'Using %s' % sel_model
        model_file = sel_model['ckpt_file'].split('.')[0]
        model_ckpt = '%s.ckpt-%s' % (
            model_file,
            model_file.split(os.path.sep)[-1].split('_')[-1])
        model_meta = '%s.meta' % model_ckpt

        # Pull stimuli
        stim_dir = os.path.join(
            main_config.tf_record_output,
            sel_model['experiment_name'])
        stim_files = glob(stim_dir + '*')
        stim_meta_file = [x for x in stim_files if 'meta' in x][0]
        # stim_val_data = [x for x in stim_files if 'val.tfrecords' in x][0]
        stim_val_data = [x for x in stim_files if 'train.tfrecords' in x][0]
        stim_val_mean = [x for x in stim_files if 'train_means' in x][0]
        assert stim_meta_file is not None
        assert stim_val_data is not None
        assert stim_val_mean is not None
        stim_meta_data = np.load(stim_meta_file).item()
        rf_stim_meta_data = stim_meta_data['rf_data']
        stim_mean_data = np.load(
            stim_val_mean).items()[0][1].item()['image']['mean']

        # Store sparse noise for reference
        sparse_rf_on = {
            'center_x': rf_stim_meta_data.get('on_center_x', None),
            'center_y': rf_stim_meta_data.get('on_center_y', None),
            'width_x': rf_stim_meta_data.get('on_width_x', None),
            'width_y': rf_stim_meta_data.get('on_width_y', None),
            'distance': rf_stim_meta_data.get('on_distance', None),
            'area': rf_stim_meta_data.get('on_area', None),
            'rotation': rf_stim_meta_data.get('on_rotation', None),
        }
        sparse_rf_off = {
            'center_x': rf_stim_meta_data.get('off_center_x', None),
            'center_y': rf_stim_meta_data.get('off_center_y', None),
            'width_x': rf_stim_meta_data.get('off_width_x', None),
            'width_y': rf_stim_meta_data.get('off_width_y', None),
            'distance': rf_stim_meta_data.get('off_distance', None),
            'area': rf_stim_meta_data.get('off_area', None),
            'rotation': rf_stim_meta_data.get('off_rotation', None),
        }
        sparse_rf = {'on': sparse_rf_on, 'off': sparse_rf_off}

        # Pull responses
        dataset_module = py_utils.import_module(
            model_dir=config.dataset_info,
            dataset=sel_model['experiment_name'])
        dataset_module = dataset_module.data_processing()
        with tf.device('/cpu:0'):
            val_images = tf.placeholder(
                tf.float32,
                shape=[1] + [x for x in dataset_module.im_size])

        # Mean normalize
        log = logger.get(os.path.join(output_dir, 'sta_logs', target_model))
        data_dir = os.path.join(output_dir, 'data', target_model)
        py_utils.make_dir(data_dir)
        sys.path.append(os.path.join('models', 'structs', sel_model['experiment_name']))
        model_dict = __import__(target_model) 
        if hasattr(model_dict, 'output_structure'):
            # Use specified output layer
            output_structure = model_dict.output_structure
        else:
            output_structure = None
        model = model_utils.model_class(
            mean=stim_mean_data,
            training=True,  # FIXME
            output_size=dataset_module.output_size)
        with tf.device('/gpu:0'):
            with tf.variable_scope('cnn') as scope:
                val_scores, model_summary = model.build(
                    data=val_images,
                    layer_structure=model_dict.layer_structure,
                    output_structure=output_structure,
                    log=log,
                    tower_name='cnn')
                grad_image = tf.gradients(model.output, val_images)[0]
        print(json.dumps(model_summary, indent=4))

        # Set up summaries and saver
        saver = tf.train.Saver(tf.global_variables())
        summary_op = tf.summary.merge_all()

        # Initialize the graph
        sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

        # Need to initialize both of these if supplying num_epochs to inputs
        sess.run(
            tf.group(
                tf.global_variables_initializer(),
                tf.local_variables_initializer())
            )
        saver.restore(sess, model_ckpt)

        # Set up exemplar threading
        if target_model == 'conv2d':
            fname = [
                x for x in tf.global_variables()
                if 'conv1_1_filters:0' in x.name]
        elif target_model == 'sep_conv2d':
            fname = [
                x for x in tf.global_variables()
                if 'sep_conv1_1_filters:0' in x.name]
        elif target_model == 'dog':
            fname = [
                x for x in tf.global_variables()
                if 'dog1_1_filters:0' in x.name]
        else:
            raise NotImplementedError
        val_tensors = {
            'images': val_images,
        #     'labels': val_labels,
            'filts': fname,
            'responses': model[target_layer],
            'labels': model['output'],
            'grads': grad_image
        }
        all_images, all_preds, all_grads, all_responses = [], [], [], []
        num_steps = 10000
        stimuli = os.path.join(
            stimulus_dir,
            'locally_sparse_noise_8deg_template.pkl')
        stimuli = pickle.load(open(stimuli, 'rb'))[:num_steps]
        ih, iw = 304, 608
        ns, sh, sw = stimuli.shape
        sh, sw = ih, iw
        sh = int(sh)
        sw = int(sw)
        tb = int((ih - sh) // 2)
        lr = int((iw - sw) // 2)
        gns = 32
        cnst = 127.5
        for step in range(num_steps):  # step, stim in enumerate(stimuli):  # step in range(num_steps):
            chosen_stim = np.random.permutation(ns)[0]
            if preload_stim:
                it_stim = stimuli[chosen_stim].astype(np.float32)
                it_stim = it_stim.astype(np.float32)
                noise_im = (misc.imresize(it_stim, [sh, sw], interp='nearest'))
                noise_im = cv2.copyMakeBorder(
                    noise_im.squeeze(), tb, tb, lr, lr, cv2.BORDER_CONSTANT, value=cnst)
            else:
                stim_noise = scipy.sparse.csr_matrix(scipy.sparse.random(ih // gns, iw // gns, density=0.05)).todense()
                stim_noise_mask = stim_noise == 0
                stim_noise[stim_noise > 0.5] = 255.
                stim_noise[stim_noise < 0.5] = 0.
                stim_noise[stim_noise_mask] = cnst
                noise_im = (misc.imresize(stim_noise.squeeze(), [sh, sw], interp='nearest'))
            if np.random.rand() < 0.5:
                noise_im = np.fliplr(noise_im)
            if np.random.rand() < 0.5:
                noise_im = np.flipud(noise_im)
            # noise_im = (misc.imresize(it_stim, [ih, iw], interp='nearest'))[None, :, :, None]
            noise_im = noise_im / 255.
            noise_im = noise_im[None, :, :, None]
            assert noise_im.max() <= 1
            val_vals = sess.run(val_tensors.values(), feed_dict={val_images: noise_im})
            val_dict = {k: v for k, v in zip(val_tensors.keys(), val_vals)}
            all_images += [noise_im]  # val_dict['images']]
            # all_responses += [val_dict['responses']]
            all_preds += [val_dict['labels'].squeeze()]
            # all_grads += [val_dict['grads'].squeeze()]
            print 'Finished step %s' % step

        # Process and save data
        all_images = np.concatenate(all_images).squeeze()
        ev, vals = peakdet(all_preds, np.median(all_preds))
        sp = np.zeros_like(all_preds)
        sp[ev[:, 0].astype(int)] = 1
        plt.imshow(np.matmul(all_images.reshape(all_images.shape[0], -1).transpose(), all_preds).reshape(ih, iw));plt.show()
        plt.imshow(np.matmul(all_images.reshape(all_images.shape[0], -1).transpose(), sp).reshape(ih, iw));plt.show()
        filters = val_dict['filts'][0].squeeze().transpose(2, 0, 1)
        import ipdb;ipdb.set_trace()
        all_grads = np.asarray(all_grads)
        all_preds = np.asarray(all_preds).reshape(-1, 1)
        import ipdb;ipdb.set_trace()
       
    
        # res_f = all_responses.reshape(ne * h * w, k)
        # res_g = res_grads.reshape(ne, rh * rw)
        # i_cov = np.cov(res_i.transpose())
        # f_cov = np.cov(res_f.transpose())
        # g_cov = np.cov(res_g.transpose())
        # sp = (all_preds > all_preds.mean()).astype(np.float32)
        # res_i = res_g
        # ev, vals = peakdet(all_preds, 0.5)
        # sp = np.zeros_like(all_preds)
        # sp[ev[:, 0].astype(int)] = 1
        # slen = ne
        # nsp = np.sum(sp)  # number of spikes
        # swid = rh * rw
        # Msz = np.dot(np.dot(slen, swid), ne)  # Size of full stimulus matrix
        # rowlen = 1830  # np.dot(swid, ne) # Length of a single row of stimulus matrix
        
        # Compute raw mean and covariance
        # RawMu = np.mean(res_i, 0).T
        # RawCov = np.dot(res_i.T, res_i) / (slen-1.) - (RawMu*np.vstack(RawMu)*slen) / (slen-1.)
        
        # Compute spike-triggered mean and covariance
        # iisp = np.nonzero((sp > 0.))
        # spvec = sp[iisp]
        # STA = np.divide(np.dot(spvec.T, res_i[iisp[0],:]).T, nsp)
        # STC = np.dot(res_i[iisp[0],:].T, np.multiply(res_i[iisp[0],:], ml.repmat(spvec, rowlen, 1).T))/(nsp-1.) - (STA*np.vstack(STA)*nsp)/(nsp-1.)

        # res_i_cov = np.matmul(res_i.transpose(), res_i)
        # inv_res_i = np.linalg.pinv(res_i_cov)
        # sta = inv_res_i * np.matmul(res_i.transpose(), all_preds)
        # sta = inv_res_i * np.matmul(res_i.transpose(), spike_preds)

        # sti = (1. / float(ne)) * (np.linalg.pinv(i_cov) * np.matmul(res_i, all_preds))
        # sta = (1. / float(ne)) * (np.linalg.pinv(f_cov) * np.matmul(res_f, all_preds))
        # sta = sta.reshape(h, w)
        # stg = (1. / float(ne)) * np.matmul(all_grads.reshape(h * w, ne), all_preds)
        # stg = stg.reshape(h, w)
        np.savez(
            os.path.join(data_dir, 'data'),
            images=all_images,
            pred=all_preds,
            filters=filters,
            STA=STA,
            fits=fits,
            grads=all_grads)
        if target_model != 'dog':
            save_mosaic(
                maps=filters,  # [0].squeeze().transpose(2, 0, 1),
                output=os.path.join(data_dir, '%s_filters' % target_layer),
                rc=8,
                cc=4,
                title='%s filters' % (
                    target_layer))
        else:
            import ipdb;ipdb.set_trace()
        print 'Complete.'