rel_prop, combined_scores[:, video_cls][:, None], loc_scores, dur_scores), axis=1) except: print(video_cls, rel_prop.shape, combined_scores.shape, reg_scores.shape, loc_scores.shape, dur_scores.shape) raise print("Preprocessing detections...") for k, v in detection_scores.items(): gen_detection_results(k, v) print('Done.') # perform NMS print("Performing nms...") for cls in range(num_class): dataset_detections[cls] = { k: temporal_nms(v, nms_threshold) for k,v in dataset_detections[cls].items() } print("NMS Done.") def perform_regression(detections): t0 = detections[:, 0] t1 = detections[:, 1] center = (t0 + t1) / 2 duration = (t1 - t0) new_center = center + duration * detections[:, 3] new_duration = duration * np.exp(detections[:, 4]) new_detections = np.concatenate(( np.clip(new_center - new_duration / 2, 0, 1)[:, None], np.clip(new_center + new_duration / 2, 0, 1)[:, None], detections[:, 2:]
except: print(video_cls, rel_prop.shape, combined_scores.shape, reg_scores.shape, loc_scores.shape, dur_scores.shape) raise print("Preprocessing detections...") for k, v in detection_scores.items(): gen_detection_results(k, v) print('Done.') # perform NMS print("Performing nms...") for cls in range(num_class): dataset_detections[cls] = { k: temporal_nms(v, nms_threshold) for k, v in dataset_detections[cls].items() } print("NMS Done.") def perform_regression(detections): t0 = detections[:, 0] t1 = detections[:, 1] center = (t0 + t1) / 2 duration = (t1 - t0) new_center = center + duration * detections[:, 3] new_duration = duration * np.exp(detections[:, 4]) new_detections = np.concatenate(