Example #1
0
    def baselineAttLayer(self,
                         images,
                         memory,
                         inDim,
                         hDim,
                         name="",
                         reuse=None):
        with tf.variable_scope("attLayer" + name, reuse=reuse):
            # projImages = ops.linear(images, inDim, hDim, name = "projImage")
            # projMemory = tf.expand_dims(ops.linear(memory, inDim, hDim, name = "projMemory"), axis = -2)
            # if config.saMultiplicative:
            #     interactions = projImages * projMemory
            # else:
            #     interactions = tf.tanh(projImages + projMemory)
            interactions, _ = ops.mul(images,
                                      memory,
                                      inDim,
                                      proj={
                                          "dim": hDim,
                                          "shared": False
                                      },
                                      interMod=config.baselineAttType)

            attention = ops.inter2att(interactions, hDim)
            summary = ops.att2Smry(attention, images)
            newMemory = memory + summary

        return newMemory
    def baseline(self, vecQuestions, questionDim, images, imageDim, hDim):
        with tf.variable_scope("baseline"):
            if config.baselineAtt:
                memory = ops.linear(vecQuestions,
                                    questionDim,
                                    hDim,
                                    name="qProj")
                images = ops.linear(images, imageDim, hDim, name="iProj")

                for i in range(config.baselineAttNumLayers):
                    memory = self.baselineAttLayer(images,
                                                   memory,
                                                   hDim,
                                                   hDim,
                                                   name="baseline%d" % i)
                memDim = hDim
            else:
                if config.imageObjects:
                    cff = tf.get_variable(
                        "cff",
                        shape=(imageDim, ),
                        initializer=tf.random_normal_initializer())
                    interactions, hDim = ops.mul(images, cff, imageDim)
                    attention = ops.inter2att(interactions,
                                              hDim,
                                              mask=self.imagesObjectNum)
                    images = ops.att2Smry(attention, images)
                else:
                    images, imageDim = ops.linearizeFeatures(
                        images,
                        self.H,
                        self.W,
                        imageDim,
                        projDim=config.baselineProjDim)
                if config.baselineLSTM and config.baselineCNN:
                    memory = tf.concat([vecQuestions, images], axis=-1)
                    memDim = questionDim + imageDim
                elif config.baselineLSTM:
                    memory = vecQuestions
                    memDim = questionDim
                else:  # config.baselineCNN
                    memory = images
                    memDim = imageDim

        return memory, memDim
Example #3
0
    def write(self,
              memory,
              info,
              control,
              contControl=None,
              name="",
              reuse=None):
        with tf.variable_scope("write" + name, reuse=reuse):

            # optionally project info
            if config.writeInfoProj:
                info = ops.linear(info,
                                  config.memDim,
                                  config.memDim,
                                  name="info")

            # optional info nonlinearity
            info = ops.activations[config.writeInfoAct](info)

            # compute self-attention vector based on previous controls and memories
            if config.writeSelfAtt:
                print("using self attention")
                selfControl = control
                if config.writeSelfAttMod == "CONT":
                    selfControl = contControl
                # elif config.writeSelfAttMod == "POST":
                #     selfControl = postControl
                selfControl = ops.linear(selfControl,
                                         config.ctrlDim,
                                         config.ctrlDim,
                                         name="ctrlProj")

                interactions = self.controls * tf.expand_dims(selfControl,
                                                              axis=1)

                # if config.selfAttShareInter:
                #     selfAttlogits = self.linearP(selfAttInter, config.encDim, 1, self.interL[0], self.interL[1], name = "modSelfAttInter")
                attention = ops.inter2att(interactions,
                                          config.ctrlDim,
                                          name="selfAttention")
                self.attentions["self"].append(attention)
                selfSmry = ops.att2Smry(attention, self.memories)

            # get write unit inputs: previous memory, the new info, optionally self-attention / control
            newMemory, dim = memory, config.memDim
            if config.writeInputs == "INFO":
                newMemory = info
            elif config.writeInputs == "SUM":
                newMemory += info
            elif config.writeInputs == "BOTH":
                newMemory, dim = ops.concat(newMemory,
                                            info,
                                            dim,
                                            mul=config.writeConcatMul)
            # else: MEM

            if config.writeSelfAtt:
                newMemory = tf.concat([newMemory, selfSmry], axis=-1)
                dim += config.memDim

            if config.writeMergeCtrl:
                newMemory = tf.concat([newMemory, control], axis=-1)
                dim += config.memDim

            # project memory back to memory dimension
            if config.writeMemProj or (dim != config.memDim):
                newMemory = ops.linear(newMemory,
                                       dim,
                                       config.memDim,
                                       name="newMemory")

            # optional memory nonlinearity
            newMemory = ops.activations[config.writeMemAct](newMemory)

            # write unit gate
            if config.writeGate:
                gateDim = config.memDim
                if config.writeGateShared:
                    gateDim = 1

                z = tf.sigmoid(
                    ops.linear(control,
                               config.ctrlDim,
                               gateDim,
                               name="gate",
                               bias=config.writeGateBias))

                self.attentions["gate"].append(z)

                newMemory = newMemory * z + memory * (1 - z)

            # optional batch normalization
            if config.memoryBN:
                newMemory = tf.contrib.layers.batch_norm(
                    newMemory,
                    decay=config.bnDecay,
                    center=config.bnCenter,
                    scale=config.bnScale,
                    is_training=self.train,
                    updates_collections=None)

        return newMemory
Example #4
0
    def read(self, knowledgeBase, memory, control, name="", reuse=None):
        with tf.variable_scope("read" + name, reuse=reuse):
            dim = config.memDim

            ## memory dropout
            if config.memoryVariationalDropout:
                memory = ops.applyVarDpMask(memory, self.memDpMask,
                                            self.dropouts["memory"])
            else:
                memory = tf.nn.dropout(memory, self.dropouts["memory"])

            ## Step 1: knowledge base / memory interactions
            # parameters for knowledge base and memory projection
            proj = None
            if config.readProjInputs:
                proj = {
                    "dim": config.attDim,
                    "shared": config.readProjShared,
                    "dropout": self.dropouts["read"]
                }
                dim = config.attDim

            # parameters for concatenating knowledge base elements
            concat = {
                "x": config.readMemConcatKB,
                "proj": config.readMemConcatProj
            }

            # compute interactions between knowledge base and memory
            interactions, interDim = ops.mul(x=knowledgeBase,
                                             y=memory,
                                             dim=config.memDim,
                                             proj=proj,
                                             concat=concat,
                                             interMod=config.readMemAttType,
                                             name="memInter")

            projectedKB = proj.get("x") if proj else None

            # project memory interactions back to hidden dimension
            if config.readMemProj:
                interactions = ops.linear(interactions,
                                          interDim,
                                          dim,
                                          act=config.readMemAct,
                                          name="memKbProj")
            else:
                dim = interDim

            ## Step 2: compute interactions with control
            if config.readCtrl:
                # compute interactions with control
                if config.ctrlDim != dim:
                    control = ops.linear(control,
                                         ctrlDim,
                                         dim,
                                         name="ctrlProj")

                interactions, interDim = ops.mul(
                    interactions,
                    control,
                    dim,
                    interMod=config.readCtrlAttType,
                    concat={"x": config.readCtrlConcatInter},
                    name="ctrlInter")

                # optionally concatenate knowledge base elements
                if config.readCtrlConcatKB:
                    if config.readCtrlConcatProj:
                        addedInp, addedDim = projectedKB, config.attDim
                    else:
                        addedInp, addedDim = knowledgeBase, config.memDim
                    interactions = tf.concat([interactions, addedInp], axis=-1)
                    dim += addedDim

                # optional nonlinearity
                interactions = ops.activations[config.readCtrlAct](
                    interactions)

            ## Step 3: sum attentions up over the knowledge base
            # transform vectors to attention distribution
            # attention = ops.inter2att_mask(interactions, dim, self.snippets_lengths, dropout = self.dropouts["read"])
            attention = ops.inter2att(interactions,
                                      dim,
                                      dropout=self.dropouts["read"])

            self.attentions["kb"].append(attention)

            # optionally use projected knowledge base instead of original
            if config.readSmryKBProj:
                knowledgeBase = projectedKB

            # sum up the knowledge base according to the distribution
            # information = ops.att2Smry(attention, knowledgeBase)
            # adding level snippet attention
            information = ops.att2Smry_snippet_level_att(
                attention, knowledgeBase, self.snippets_lengths)

        return information