def test_summary_get_support(): data = load_breast_cancer() variable_names = data.feature_names X = data.data y = data.target process = BinningProcess(variable_names, min_iv=0.1, max_iv=0.6) with raises(ValueError): process.summary() with raises(ValueError): process.get_support() process.fit(X, y, check_input=True) assert isinstance(process.summary(), pd.DataFrame) with raises(ValueError): process.get_support(indices=True, names=True) assert all(process.get_support() == [ False, False, False, False, False, False, False, False, False, True, False, True, False, False, True, False, False, False, True, True, False, False, False, False, False, False, False, False, False, True ]) assert process.get_support(indices=True) == approx([9, 11, 14, 18, 19, 29]) assert all( process.get_support(names=True) == [ 'mean fractal dimension', 'texture error', 'smoothness error', 'symmetry error', 'fractal dimension error', 'worst fractal dimension' ])
def test_summary_get_support(): data = load_breast_cancer() variable_names = data.feature_names X = data.data y = data.target selection_criteria = {"iv": {"min": 0.1, "max": 0.6, "strategy": "highest", "top": 10}} process = BinningProcess(variable_names=variable_names, selection_criteria=selection_criteria) with raises(ValueError): process.summary() with raises(ValueError): process.get_support() process.fit(X, y, check_input=True) assert isinstance(process.summary(), pd.DataFrame) with raises(ValueError): process.get_support(indices=True, names=True) assert all(process.get_support() == [ False, False, False, False, False, False, False, False, False, True, False, True, False, False, True, False, False, False, True, True, False, False, False, False, False, False, False, False, False, True]) assert process.get_support(indices=True) == approx([9, 11, 14, 18, 19, 29]) assert all(process.get_support(names=True) == [ 'mean fractal dimension', 'texture error', 'smoothness error', 'symmetry error', 'fractal dimension error', 'worst fractal dimension'])