def __call__(self, domain: Domain) -> Tuple[List[int], List[Field]]: output_ports: List[int] = [] output_fields: List[Field] = [] field = Field(domain, cst.OPTI, self.field_name) # Check offset ------------------------------------------------- for i in range(len(self.offset_nu)): if (abs(self.offset_nu[i]) > domain.nu_window): self.offset_nu[i] = 0.0 util.warning_terminal( "The offset of channel {} in component " "{} is bigger than half the frequency window, offset will " "be ignored.".format(str(i), self.name)) # Field initialization ----------------------------------------- if (self.energy): peak_power: List[float] = [] time_window = domain.time_window * 1e-12 # ps -> s for i in range(len(self.energy)): peak_power.append(self.energy[i] / time_window) else: peak_power = self.peak_power rep_freq = np.nan for i in range(self.channels): # Nbr of channels res = np.zeros(domain.time.shape, dtype=cst.NPFT) phi = (self.init_phi[i] - Domain.nu_to_omega(self.offset_nu[i]) * domain.time) res += math.sqrt(peak_power[i]) * np.exp(1j * phi) field.add_channel(res, Domain.lambda_to_omega(self.center_lambda[i]), rep_freq) output_fields.append(field) output_ports.append(0) return output_ports, output_fields
def __call__(self, domain: Domain) -> Tuple[List[int], List[Field]]: output_ports: List[int] = [] output_fields: List[Field] = [] field = Field(domain, cst.OPTI) # Bit rate initialization -------------------------------------- nbr_pulses = [] for i in range(self.channels): if (self.bit_rate[i]): nbr_temp = math.floor(domain.time_window * self.bit_rate[i]) if (nbr_temp): nbr_pulses.append(nbr_temp) else: util.warning_terminal( "In component {}: the time window " "is too thin for the bit rate specified, bit rate " "will be ignored".format(self.name)) nbr_pulses.append(1) else: nbr_pulses.append(1) rel_pos = [] for i in range(self.channels): pos_step = 1 / nbr_pulses[i] if (nbr_pulses[i] % 2): # Odd dist_from_center = nbr_pulses[i] // 2 * pos_step else: dist_from_center = (nbr_pulses[i] // 2 - 1) * pos_step + pos_step / 2 rel_pos.append( np.linspace(self.position[i] - dist_from_center, self.position[i] + dist_from_center, num=nbr_pulses[i])) # Check offset ------------------------------------------------- for i in range(len(self.offset_nu)): if (abs(self.offset_nu[i]) > domain.nu_window): self.offset_nu[i] = 0.0 util.warning_terminal( "The offset of channel {} in component " "{} is bigger than half the frequency window, offset will " "be ignored.".format(str(i), self.name)) # Field initialization ----------------------------------------- for i in range(self.channels): # Nbr of channels res = np.zeros(domain.time.shape, dtype=cst.NPFT) for j in range(len(rel_pos[i])): norm_time = domain.get_shift_time( rel_pos[i][j]) / self.width[i] var_time = np.power(norm_time, 2) phi = (self.init_phi[i] - Domain.nu_to_omega(self.offset_nu[i]) * domain.time - 0.5 * self.chirp[i] * var_time) res += (math.sqrt(self.peak_power[i]) / np.cosh(norm_time) * np.exp(1j * phi)) field.append(res, Domain.lambda_to_omega(self.center_lambda[i])) output_fields.append(field) output_ports.append(0) return output_ports, output_fields
def __call__(self, domain: Domain) -> Tuple[List[int], List[Field]]: output_ports: List[int] = [] output_fields: List[Field] = [] field: Field = Field(domain, cst.OPTI, self.field_name) # Bit rate initialization -------------------------------------- rel_pos: List[np.ndarray] rel_pos = util.pulse_positions_in_time_window(self.channels, self.rep_freq, domain.time_window, self.position) # Check offset ------------------------------------------------- for i in range(len(self.offset_nu)): if (abs(self.offset_nu[i]) > domain.nu_window): self.offset_nu[i] = 0.0 util.warning_terminal( "The offset of channel {} in component " "{} is bigger than half the frequency window, offset will " "be ignored.".format(str(i), self.name)) # Field initialization ----------------------------------------- width: float for i in range(self.channels): # Nbr of channels if (self.fwhm is None): width = self.width[i] else: width = self.fwhm_to_width(self.fwhm[i]) res: np.ndarray = np.zeros(domain.time.shape, dtype=cst.NPFT) for j in range(len(rel_pos[i])): norm_time = domain.get_shift_time(rel_pos[i][j]) / width var_time = np.power(norm_time, 2) phi = (self.init_phi[i] - Domain.nu_to_omega(self.offset_nu[i]) * domain.time - 0.5 * self.chirp[i] * var_time) res += (math.sqrt(self.peak_power[i]) / np.cosh(norm_time) * np.exp(1j * phi)) field.add_channel(res, Domain.lambda_to_omega(self.center_lambda[i]), self.rep_freq[i]) if (self.noise is not None): field.noise = self.noise output_fields.append(field) output_ports.append(0) return output_ports, output_fields