Example #1
0
    def fit(self, data):
        self.isTrained = True

        # self.debugger = PartitionalClusteringDebugger()

        self.n_attributes = data.shape[1]

        initializer = PSOCKM_SearchSpaceInitializer(self.n_clusters, data)

        # initializer = UniformSSInitializer()

        self.pso = PSO(PSOCKMObjectiveFunction(data, self.n_clusters, self.n_attributes),
                       search_space_initializer=initializer,
                       swarm_size=self.swarm_size,
                       n_iter=self.n_iter,
                       lb_w=self.lb_w, c1=self.c1, c2=self.c2, v_max=self.v_max)

        self.pso.optimize()

        self.centroids = {}
        raw_centroids = self.pso.gbest_particle.pos.reshape((self.n_clusters, self.n_attributes))

        for c in range(len(raw_centroids)):
            self.centroids[c] = raw_centroids[c]

        kmeans = KMeans(n_clusters=self.n_clusters, n_iter=1000)
        kmeans.set_initial_solution(dict(self.centroids))
        kmeans.fit(data)
        self.centroids = dict(kmeans.centroids)

        self.solution = ClusteringSolution(centroids=self.centroids, dataset=data)

        return self.n_iter
Example #2
0
    def fit(self, data):
        self.isTrained = True
        self.n_attributes = data.shape[1]
        initializer = PSOC_SearchSpaceInitializer(self.n_clusters, data)

        self.pso = PSO(PSOCObjectiveFunction(data, self.n_clusters,
                                             self.n_attributes),
                       search_space_initializer=initializer,
                       swarm_size=self.swarm_size,
                       n_iter=self.n_iter,
                       lb_w=self.lb_w,
                       c1=self.c1,
                       c2=self.c2,
                       v_max=self.v_max)

        self.pso.optimize()

        self.centroids = {}
        raw_centroids = self.pso.gbest_particle.pos.reshape(
            (self.n_clusters, self.n_attributes))

        for c in range(len(raw_centroids)):
            self.centroids[c] = raw_centroids[c]

        self.solution = ClusteringSolution(centroids=self.centroids,
                                           dataset=data)
        return self.n_iter
Example #3
0
    def fit(self, data):
        self.run = True
        self.dim = data.shape[1]
        self.pso = PSO(dim=self.dim * self.n_clusters,
                       minf=0,
                       maxf=1,
                       swarm_size=self.swarm_size,
                       n_iter=self.n_iter,
                       w=self.w,
                       lb_w=self.lb_w,
                       c1=self.c1,
                       c2=self.c2)
        self.pso.optimize(self.__objective_function,
                          customizable=True,
                          dim=self.dim,
                          n_clusters=self.n_clusters,
                          data=data)

        self.centroids = {}
        raw_centroids = self.pso.global_optimum.pos.reshape(
            (self.n_clusters, self.dim))

        for centroid in range(len(raw_centroids)):
            self.centroids[centroid] = raw_centroids[centroid]

        kmeans = KMeans(n_clusters=self.n_clusters)
        kmeans.set_initial_solution(dict(self.centroids))
        kmeans.fit(data)
        self.centroids = dict(kmeans.centroids)
Example #4
0
    def fit(self, data):
        self.isTrained = True
        self.n_attributes = data.shape[1]
        kmeans = KMeans(n_clusters=self.n_clusters, n_iter=1000)
        kmeans.fit(data)

        candidate = []
        for k in kmeans.centroids:
            candidate.append(kmeans.centroids[k])
        candidate = np.array(candidate).ravel()

        objective_function = KMPSOC_ObjectiveFunction(data, self.n_clusters,
                                                      self.n_attributes)
        search_space_initializer = KMPSOC_SearchSpaceInitializer(
            self.n_clusters, data, candidate=candidate)

        self.pso = PSO(objective_function=objective_function,
                       search_space_initializer=search_space_initializer,
                       swarm_size=self.swarm_size,
                       n_iter=self.n_iter,
                       lb_w=self.lb_w,
                       c1=self.c1,
                       c2=self.c2,
                       v_max=self.v_max)

        self.pso.optimize()

        self.centroids = {}
        raw_centroids = self.pso.gbest_particle.pos.reshape(
            (self.n_clusters, self.n_attributes))

        for centroid in range(len(raw_centroids)):
            self.centroids[centroid] = raw_centroids[centroid]

        self.solution = ClusteringSolution(centroids=self.centroids,
                                           dataset=data)

        return self.n_iter
Example #5
0
class PSOCKM(object):
    def __init__(self, n_clusters=2, swarm_size=100, n_iter=500, w=0.72, c1=1.49, c2=1.49):
        self.n_clusters = n_clusters
        self.swarm_size = swarm_size
        self.n_iter = n_iter
        self.isTrained = False

        self.up_w = w
        self.lb_w = w
        self.c1 = c1
        self.c2 = c2
        self.v_max = 0.5
        self.pso = None

        # self.debugger = PartitionalClusteringDebugger()

    def fit(self, data):
        self.isTrained = True

        # self.debugger = PartitionalClusteringDebugger()

        self.n_attributes = data.shape[1]

        initializer = PSOCKM_SearchSpaceInitializer(self.n_clusters, data)

        # initializer = UniformSSInitializer()

        self.pso = PSO(PSOCKMObjectiveFunction(data, self.n_clusters, self.n_attributes),
                       search_space_initializer=initializer,
                       swarm_size=self.swarm_size,
                       n_iter=self.n_iter,
                       lb_w=self.lb_w, c1=self.c1, c2=self.c2, v_max=self.v_max)

        self.pso.optimize()

        self.centroids = {}
        raw_centroids = self.pso.gbest_particle.pos.reshape((self.n_clusters, self.n_attributes))

        for c in range(len(raw_centroids)):
            self.centroids[c] = raw_centroids[c]

        kmeans = KMeans(n_clusters=self.n_clusters, n_iter=1000)
        kmeans.set_initial_solution(dict(self.centroids))
        kmeans.fit(data)
        self.centroids = dict(kmeans.centroids)

        self.solution = ClusteringSolution(centroids=self.centroids, dataset=data)

        return self.n_iter

    def reset(self):
        self.isTrained = False

    def predict(self, x):
        if self.isTrained:
            dist = []
            for c in self.centroids:
                temp_centroid = np.tile(self.centroids[c], (np.shape(x)[0], 1))
                diff = (x - self.centroids[c])
                power2 = (x - self.centroids[c]) ** 2
                sum = np.sum((x - self.centroids[c]) ** 2, axis=1)
                dist.append(sum)
            labels = np.argmin(dist, axis=0)
            return np.array(labels).T
            # return np.argmin(np.array(class_).T, axis=1)

        raise Exception("NonTrainedModelException: You must fit data first!")
Example #6
0
class PSOKM(object):
    def __init__(self,
                 n_clusters=2,
                 swarm_size=100,
                 n_iter=500,
                 w=0.72,
                 lb_w=0.4,
                 w_damp=None,
                 c1=1.49,
                 c2=1.49):
        self.n_clusters = n_clusters
        self.swarm_size = swarm_size
        self.n_iter = n_iter
        self.w = w
        self.lb_w = lb_w
        self.c1 = c1
        self.c2 = c2
        self.run = False
        self.v_max = None

        if w_damp is None:
            self.w_damp = self.w - self.lb_w

    def fit(self, data):
        self.run = True
        self.dim = data.shape[1]
        self.pso = PSO(dim=self.dim * self.n_clusters,
                       minf=0,
                       maxf=1,
                       swarm_size=self.swarm_size,
                       n_iter=self.n_iter,
                       w=self.w,
                       lb_w=self.lb_w,
                       c1=self.c1,
                       c2=self.c2)
        self.pso.optimize(self.__objective_function,
                          customizable=True,
                          dim=self.dim,
                          n_clusters=self.n_clusters,
                          data=data)

        self.centroids = {}
        raw_centroids = self.pso.global_optimum.pos.reshape(
            (self.n_clusters, self.dim))

        for centroid in range(len(raw_centroids)):
            self.centroids[centroid] = raw_centroids[centroid]

        kmeans = KMeans(n_clusters=self.n_clusters)
        kmeans.set_initial_solution(dict(self.centroids))
        kmeans.fit(data)
        self.centroids = dict(kmeans.centroids)

    def predict(self, x):
        if self.run:
            if len(x.shape) > 1:
                class_ = []
                for c in self.centroids:
                    class_.append(
                        np.sum((x - self.centroids[c].best_post)**2, axis=1))
                return np.argmin(np.array(class_).T, axis=1)
            else:
                dist = [
                    np.linalg.norm(x - self.centroids[c])
                    for c in self.centroids
                ]
                class_ = dist.index(min(dist))
                return class_
        else:
            raise Exception(
                "NonTrainedModelException: You must fit data first!")

    def __objective_function(self, particle, **kwargs):
        if ('dim' not in kwargs) or ('n_clusters' not in kwargs) or (
            ('data' not in kwargs)):
            raise Exception(
                'Illegal Arguments Exception: Expected arguments does not match!'
            )

        dim = kwargs.get("dim")
        data = kwargs.get("data")
        n_clusters = kwargs.get("n_clusters")

        centroids = particle.reshape((n_clusters, dim))
        clusters = {}

        for k in range(n_clusters):
            clusters[k] = []

        for xi in data:
            dist = [
                np.linalg.norm(xi - centroids[c])
                for c in range(len(centroids))
            ]
            class_ = dist.index(min(dist))
            clusters[class_].append(xi)

        inter_cluster_sum = 0.0
        for c in range(len(centroids)):
            intra_sum = 0.0
            if len(clusters[c]) > 0:
                for point in clusters[c]:
                    intra_sum += np.linalg.norm(point - centroids[c])
                intra_sum = intra_sum / len(clusters[c])
            inter_cluster_sum += intra_sum
        inter_cluster_sum = inter_cluster_sum / len(centroids)
        return inter_cluster_sum