for i in range(n_models): # create a model randomly from all channels weights_model = problem.generator(prng, None) for j, dt in enumerate(dts): print 'run '+'model: ' + str(i) + ' dt: ' +str(dt) # change dt data_newdt = change_dt(dt, problem.data) problem.simulation_params = extract_simulation_params(data_newdt) # run simulation problem.update_cell(weights_model) currents = [problem.cell.soma.record_from(channel_list[k], 'i'+ion_list[k], pos=.5) for k in range(len(channel_list))] v_newdt, t_newdt = run_simulation(problem.cell, **problem.simulation_params) #pl.figure() #pl.plot(t_newdt, v_newdt) #pl.show() # compute parameter dvdt_newdt = np.concatenate((np.array([(v_newdt[1]-v_newdt[0])/dt]), np.diff(v_newdt)/dt)) i_newdt = data_newdt.i.values celsius = problem.simulation_params['celsius'] # get currents candidate = np.ones(len(problem.path_variables)) # gbars should be 1 problem.update_cell(candidate) currents_newdt = currents_given_v(v_newdt, t_newdt, problem.cell.soma, channel_list, ion_list, celsius)
for i in range(len(merge_points)-1): y_plot = y[merge_points[i]:merge_points[i+1]] X_plot = X[merge_points[i]:merge_points[i+1], :] t_plot = t_exp[merge_points[i]:merge_points[i+1]] plot_fit(y_plot, X_plot, weights, t_plot, channel_list, save_dir=save_dir+str(i)) # save np.savetxt(save_dir+'/best_candidate_'+str(trial)+'.txt', weights) np.savetxt(save_dir+'/error_'+str(trial)+'.txt', np.array([residual])) # simulate #cm = weights[-1] for i, w in enumerate(weights[:]): keys = ['soma', '0.5', channel_list[i], 'gbar'] if channel_list[i] == 'pas': keys = ['soma', '0.5', channel_list[i], 'g'] problem.cell.update_attr(keys, w) elif 'ion' in channel_list[i]: keys = None else: keys = ['soma', '0.5', channel_list[i], 'gbar'] problem.cell.update_attr(keys, w) from optimization.simulate import run_simulation v, t = run_simulation(problem.cell, **problem.simulation_params) import matplotlib.pyplot as pl pl.figure() pl.plot(t, problem.data.v, 'k') pl.plot(t, v, 'r') pl.show()