from __future__ import absolute_import from optimized_field_elements import ( FQ2, FQ12, field_modulus, FQ, ) curve_order = 21888242871839275222246405745257275088548364400416034343698204186575808495617 NullPoint = (FQ(0), FQ(0), FQ(0)) NullPoint2 = (FQ2([0, 0]), FQ2([0, 0]), FQ2([0, 0])) # Curve order should be prime assert pow(2, curve_order, curve_order) == 2 # Curve order should be a factor of field_modulus**12 - 1 assert (field_modulus**12 - 1) % curve_order == 0 # Curve is y**2 = x**3 + 3 b = FQ(3) # Twisted curve over FQ**2 b2 = FQ2([3, 0]) / FQ2([9, 1]) # Extension curve over FQ**12; same b value as over FQ b12 = FQ12([3] + [0] * 11) # Generator for curve over FQ G = (FQ(1), FQ(2), FQ(1)) # Generator for twisted curve over FQ2 G2 = ( FQ2([ 10857046999023057135944570762232829481370756359578518086990519993285655852781,
from bn128_field_elements import field_modulus, FQ from optimized_field_elements import FQ2, FQ12 # from bn128_field_elements import FQ2, FQ12 curve_order = 21888242871839275222246405745257275088548364400416034343698204186575808495617 # Curve order should be prime assert pow(2, curve_order, curve_order) == 2 # Curve order should be a factor of field_modulus**12 - 1 assert (field_modulus ** 12 - 1) % curve_order == 0 # Curve is y**2 = x**3 + 3 b = FQ(3) # Twisted curve over FQ**2 b2 = FQ2([3, 0]) / FQ2([0, 1]) # Extension curve over FQ**12; same b value as over FQ b12 = FQ12([3] + [0] * 11) # Generator for curve over FQ G1 = (FQ(1), FQ(2), FQ(1)) # Generator for twisted curve over FQ2 G2 = (FQ2([16260673061341949275257563295988632869519996389676903622179081103440260644990, 11559732032986387107991004021392285783925812861821192530917403151452391805634]), FQ2([15530828784031078730107954109694902500959150953518636601196686752670329677317, 4082367875863433681332203403145435568316851327593401208105741076214120093531]), FQ2.one()) # Check that a point is on the curve defined by y**2 == x**3 + b def is_on_curve(pt, b): if pt is None: return True x, y, z = pt return y**2 * z - x**3 == b * z**3