def create_exprs(_input_col, _buckets, _func): def count_exprs(_exprs): return F.sum(F.when(_exprs, 1).otherwise(0)) _exprs = [] for i, b in enumerate(_buckets): lower = b["lower"] upper = b["upper"] if is_numeric(lower): lower = round(lower, 2) if is_numeric(upper): upper = round(upper, 2) if len(_buckets) == 1: count = count_exprs((_func(_input_col) == lower)) else: if i == len(_buckets): count = count_exprs((_func(_input_col) > lower) & (_func(_input_col) <= upper)) else: count = count_exprs((_func(_input_col) >= lower) & (_func(_input_col) < upper)) info = F.create_map(F.lit("count"), count.cast("int"), F.lit("lower"), F.lit(lower), F.lit("upper"), F.lit(upper)).alias("hist_agg" + "_" + _input_col + "_" + str(b["bucket"])) _exprs.append(info) _exprs = F.array(*_exprs).alias("hist" + _input_col) return _exprs
def __init__(self, df, col_name, threshold, relative_error=RELATIVE_ERROR): """ :param df: :param col_name: :param threshold: """ if not is_dataframe(df): raise TypeError("Spark Dataframe expected") if not is_numeric(threshold): raise TypeError("Numeric expected") if not is_numeric(relative_error): raise TypeError("Numeric expected") self.df = df self.threshold = threshold self.relative_error = relative_error self.col_name = one_list_to_val(parse_columns(df, col_name))
def __init__(self, df, col_name, threshold): """ :param df: Spark Dataframe :param col_name: """ if not is_dataframe(df): raise TypeError("Spark Dataframe expected") self.df = df if not is_numeric(threshold): raise TypeError("Numeric expected") self.threshold = threshold self.col_name = one_list_to_val(parse_columns(df, col_name))
def parse_col_names_funcs_to_keys(data): from optimus.helpers.check import is_numeric, is_nan """ Helper function that return a formatted json with function:value inside columns. Transform from {'max_antiguedad_anos': 15, 'max_m2_superficie_construida': 1800000, 'min_antiguedad_anos': 2, 'min_m2_superficie_construida': 20} to {'m2_superficie_construida': {'min': 20, 'max': 1800000}, 'antiguedad_anos': {'min': 2, 'max': 15}} :param data: json data :return: json """ functions_array = [ "range", "count_uniques", "count_na", "min", "max", "stddev", "kurtosis", "mean", "skewness", "sum", "variance", "approx_count_distinct", "countDistinct", "na", "zeros", "percentile", "count", "hist" ] _result = {} for k, v in data[0].items(): for f in functions_array: temp_func_name = f + "_" if k.startswith(temp_func_name): _col_name = k[len(temp_func_name):] if is_nan(v): logger.print( "'{FUNCTION}' function in '{COL_NAME}' column is returning 'nan'. Is that what you expected?. " "Seems that '{COL_NAME}' has 'nan' values".format( FUNCTION=f, COL_NAME=_col_name)) # If the value is numeric only get 5 decimals elif is_numeric(v): v = round(v, 5) _result.setdefault(_col_name, {})[f] = v break return _result
def create(self, obj, method, suffix=None, output="df", additional_method=None, *args, **kwargs): """ This is a helper function that output python tests for Spark Dataframes. :param obj: Object to be tested :param method: Method to be tested :param suffix: The test name will be create using the method param. suffix will add a string in case you want to customize the test name. :param output: can be a 'df' or a 'json' :param additional_method: :param args: Arguments to be used in the method :param kwargs: Keyword arguments to be used in the functions :return: """ buffer = [] def add_buffer(value): buffer.append("\t" + value) # Create name name = [] if method is not None: name.append(method.replace(".", "_")) if additional_method is not None: name.append(additional_method) if suffix is not None: name.append(suffix) test_name = "_".join(name) func_test_name = "test_" + test_name + "()" print("Creating {test} test function...".format(test=func_test_name)) logger.print(func_test_name) if not output == "dict": add_buffer("@staticmethod\n") func_test_name = "test_" + test_name + "()" else: func_test_name = "test_" + test_name + "(self)" filename = test_name + ".test" add_buffer("def " + func_test_name + ":\n") source = "source_df" if obj is None: # Use the main df df_func = self.df elif isinstance(obj, pyspark.sql.dataframe.DataFrame): source_df = "\tsource_df=op.create.df(" + obj.export() + ")\n" df_func = obj add_buffer(source_df) else: source = get_var_name(obj) df_func = obj # Process simple arguments _args = [] for v in args: if is_str(v): _args.append("'" + v + "'") elif is_numeric(v): _args.append(str(v)) elif is_list(v): if is_list_of_strings(v): lst = ["'" + x + "'" for x in v] elif is_list_of_numeric(v): lst = [str(x) for x in v] elif is_list_of_tuples(v): lst = [str(x) for x in v] _args.append('[' + ','.join(lst) + ']') elif is_function(v): _args.append(v.__qualname__) else: _args.append(get_var_name(v)) # else: # import marshal # code_string = marshal.dumps(v.__code__) # add_buffer("\tfunction = '" + code_string + "'\n") # import marshal, types # # code = marshal.loads(code_string) # func = types.FunctionType(code, globals(), "some_func_name") _args = ','.join(_args) _kwargs = [] # print(_args) # Process keywords arguments for k, v in kwargs.items(): if is_str(v): v = "'" + v + "'" _kwargs.append(k + "=" + str(v)) # Separator if we have positional and keyword arguments separator = "" if (not is_list_empty(args)) & (not is_list_empty(kwargs)): separator = "," if method is None: add_buffer("\tactual_df = source_df\n") else: am = "" if additional_method: am = "." + additional_method + "()" add_buffer("\tactual_df =" + source + "." + method + "(" + _args + separator + ','.join(_kwargs) + ")" + am + "\n") # Apply function to the dataframe if method is None: df_result = self.op.create.df(*args, **kwargs) else: # Here we construct the method to be applied to the source object for f in method.split("."): df_func = getattr(df_func, f) df_result = df_func(*args, **kwargs) # Additional Methods if additional_method is not None: df_result = getattr(df_result, additional_method)() if output == "df": df_result.table() expected = "\texpected_df = op.create.df(" + df_result.export( ) + ")\n" elif output == "json": print(df_result) if is_str(df_result): df_result = "'" + df_result + "'" else: df_result = str(df_result) add_buffer("\tactual_df =json_enconding(actual_df)\n") expected = "\texpected_value =json_enconding(" + df_result + ")\n" elif output == "dict": print(df_result) expected = "\texpected_value =" + df_result + "\n" else: expected = "\t\n" add_buffer(expected) # Output if output == "df": add_buffer( "\tassert (expected_df.collect() == actual_df.collect())\n") elif output == "json": add_buffer("\tassert(expected_value == actual_df)\n") elif output == "dict": add_buffer( "\tself.assertDictEqual(deep_sort(expected_value), deep_sort(actual_df))\n" ) filename = self.path + "//" + filename if not os.path.exists(os.path.dirname(filename)): try: os.makedirs(os.path.dirname(filename)) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise # Write file test_file = open(filename, 'w', encoding='utf-8') for b in buffer: test_file.write(b)