Example #1
0
def handle_inputs():
    # Set indicator-dictionary for correctly retrieving / checking input options
    kwargs = {
        'single_task': False,
        'only_MNIST': False,
        'generative': True,
        'compare_code': 'none'
    }
    # Define input options
    parser = options.define_args(
        filename="main_cl",
        description='Compare & combine continual learning approaches.')
    parser = options.add_general_options(parser, **kwargs)
    parser = options.add_eval_options(parser, **kwargs)
    parser = options.add_task_options(parser, **kwargs)
    parser = options.add_model_options(parser, **kwargs)
    parser = options.add_train_options(parser, **kwargs)
    parser = options.add_replay_options(parser, **kwargs)
    parser = options.add_bir_options(parser, **kwargs)
    parser = options.add_allocation_options(parser, **kwargs)
    # Parse, process (i.e., set defaults for unselected options) and check chosen options
    args = parser.parse_args()
    options.set_defaults(args, **kwargs)
    options.check_for_errors(args, **kwargs)
    return args
def handle_inputs():
    # Set indicator-dictionary for correctly retrieving / checking input options
    kwargs = {
        'single_task': False,
        'only_MNIST': True,
        'generative': True,
        'compare_code': 'all'
    }
    # Define input options
    parser = options.define_args(
        filename="_compare_permMNIST100",
        description=
        'Compare performance of "continual learning strategies" on long instance '
        'of standard version (i.e., Domain-IL) of permMNIST (100 tasks).')
    parser = options.add_general_options(parser, **kwargs)
    parser = options.add_eval_options(parser, **kwargs)
    parser = options.add_permutedMNIST_task_options(parser, **kwargs)
    parser = options.add_model_options(parser, **kwargs)
    parser = options.add_train_options(parser, **kwargs)
    parser = options.add_replay_options(parser, **kwargs)
    parser = options.add_bir_options(parser, **kwargs)
    parser = options.add_allocation_options(parser, **kwargs)
    # Parse and process (i.e., set defaults for unselected options) options
    args = parser.parse_args()
    args.scenario = "domain"
    args.experiment = "permMNIST"
    options.set_defaults(args, **kwargs)
    return args
def handle_inputs():
    # Set indicator-dictionary for correctly retrieving / checking input options
    kwargs = {
        'single_task': False,
        'only_MNIST': True,
        'generative': True,
        'compare_code': 'bir'
    }
    # Define input options
    parser = options.define_args(
        filename="_compare_CIFAR100_bir",
        description='Compare different components of BI-R on permuted MNIST.')
    parser = options.add_general_options(parser, **kwargs)
    parser = options.add_eval_options(parser, **kwargs)
    parser = options.add_permutedMNIST_task_options(parser, **kwargs)
    parser = options.add_model_options(parser, **kwargs)
    parser = options.add_train_options(parser, **kwargs)
    parser = options.add_replay_options(parser, **kwargs)
    parser = options.add_bir_options(parser, **kwargs)
    # Parse and process (i.e., set defaults for unselected options) options
    args = parser.parse_args()
    args.scenario = "domain"
    args.experiment = "permMNIST"
    options.set_defaults(args, **kwargs)
    return args
Example #4
0
def handle_inputs():
    # Set indicator-dictionary for correctly retrieving / checking input options
    kwargs = {
        'single_task': False,
        'only_MNIST': False,
        'generative': True,
        'compare_code': 'all'
    }
    # Define input options
    parser = options.define_args(
        filename="_compare_CIFAR100",
        description=
        'Compare performance of continual learning strategies on different '
        'scenarios of split CIFAR-100.')
    parser = options.add_general_options(parser, **kwargs)
    parser = options.add_eval_options(parser, **kwargs)
    parser = options.add_task_options(parser, **kwargs)
    parser = options.add_model_options(parser, **kwargs)
    parser = options.add_train_options(parser, **kwargs)
    parser = options.add_replay_options(parser, **kwargs)
    parser = options.add_bir_options(parser, **kwargs)
    parser = options.add_allocation_options(parser, **kwargs)
    # Parse and process (i.e., set defaults for unselected options) options
    args = parser.parse_args()
    options.set_defaults(args, **kwargs)
    return args
def handle_inputs():
    # Set indicator-dictionary for correctly retrieving / checking input options
    kwargs = {
        'single_task': False,
        'only_MNIST': False,
        'generative': True,
        'compare_code': 'hyper'
    }
    # Define input options
    parser = options.define_args(
        filename="_compare_CIFAR100_hyperParams",
        description='Compare hyperparameters fo split CIFAR-100.')
    parser = options.add_general_options(parser, **kwargs)
    parser = options.add_eval_options(parser, **kwargs)
    parser = options.add_task_options(parser, **kwargs)
    parser = options.add_model_options(parser, **kwargs)
    parser = options.add_train_options(parser, **kwargs)
    parser = options.add_allocation_options(parser, **kwargs)
    parser = options.add_replay_options(parser, **kwargs)
    parser = options.add_bir_options(parser, **kwargs)
    parser.add_argument(
        '--per-bir-comp',
        action='store_true',
        help="also do gridsearch for individual BI-R components")
    # Parse and process (i.e., set defaults for unselected options) options
    args = parser.parse_args()
    options.set_defaults(args, **kwargs)
    return args