def optimize(self): p = DotMap() p.verbosity = 1 p.acq_func = EI(model=None, logs=None) # EI(model = None, logs = logs) p.model = regression.GP self.opt = opto.BO(parameters=p, task=self.task, stopCriteria=self.Stop) self.opt.optimize() print("Highest number of iterations: ", max(its))
def optimize(self): p = DotMap() p.verbosity = 1 p.acq_func = EI(model=None, logs=None) # p.acq_func = UCB(model=None, logs=None) p.model = regression.GP self.opt = opto.BO(parameters=p, task=self.task, stopCriteria=self.Stop) self.opt.optimize()
from opto.opto.classes import StopCriteria from opto.utils import bounds from opto.opto.acq_func import EI from opto import regression from objective_functions import * import numpy as np import matplotlib.pyplot as plt from dotmap import DotMap init_vrep() load_scene('scenes/normal.ttt') obj_f = generate_f(parameter_mode='normal', objective_mode='single', steps=400) task = OptTask(f=obj_f, n_parameters=4, n_objectives=1, \ bounds=bounds(min=[1, -np.pi, 0, 0], max=[60, np.pi, 1, 1]), \ vectorized=False) stopCriteria = StopCriteria(maxEvals=50) p = DotMap() p.verbosity = 1 p.acq_func = EI(model=None, logs=None) p.optimizer = opto.CMAES p.model = regression.GP opt = opto.BO(parameters=p, task=task, stopCriteria=stopCriteria) opt.optimize() logs = opt.get_logs() print("Parameters: " + str(logs.get_parameters())) print("Objectives: " + str(logs.get_objectives())) exit_vrep()