Example #1
0
def test_get_intermediate_plot():
    # type: () -> None

    # Test with no trials.
    study = _prepare_study_with_trials(no_trials=True)
    figure = _get_intermediate_plot(study)
    assert not figure.data

    def objective(trial, report_intermediate_values):
        # type: (Trial, bool) -> float

        if report_intermediate_values:
            trial.report(1.0, step=0)
            trial.report(2.0, step=1)
        return 0.0

    # Test with a trial with intermediate values.
    study = create_study()
    study.optimize(lambda t: objective(t, True), n_trials=1)
    figure = _get_intermediate_plot(study)
    assert len(figure.data) == 1
    assert figure.data[0].x == (0, 1)
    assert figure.data[0].y == (1.0, 2.0)

    # Test a study with one trial with intermediate values and
    # one trial without intermediate values.
    # Expect the trial with no intermediate values to be ignored.
    study.optimize(lambda t: objective(t, False), n_trials=1)
    assert len(study.trials) == 2
    figure = _get_intermediate_plot(study)
    assert len(figure.data) == 1
    assert figure.data[0].x == (0, 1)
    assert figure.data[0].y == (1.0, 2.0)

    # Test a study of only one trial that has no intermediate values.
    study = create_study()
    study.optimize(lambda t: objective(t, False), n_trials=1)
    figure = _get_intermediate_plot(study)
    assert not figure.data

    # Ignore failed trials.
    def fail_objective(_):
        # type: (Trial) -> float

        raise ValueError

    study = create_study()
    study.optimize(fail_objective, n_trials=1, catch=(ValueError, ))
    figure = _get_intermediate_plot(study)
    assert not figure.data
Example #2
0
def test_get_intermediate_plot():
    # type: () -> None

    # Test with no trial
    study = create_study()
    figure = _get_intermediate_plot(study)
    assert len(figure.data) == 0

    def objective(trial, report_intermediate_values):
        # type: (Trial, bool) -> float

        if report_intermediate_values:
            trial.report(1.0, step=0)
            trial.report(2.0, step=1)
        return 0.0

    # Test with a trial with intermediate values.
    study = create_study()
    study.optimize(lambda t: objective(t, True), n_trials=1)
    figure = _get_intermediate_plot(study)
    assert len(figure.data) == 1
    assert tuple(figure.data[0].x) == (0, 1)
    assert tuple(figure.data[0].y) == (1.0, 2.0)

    # Test with trials, one of which contains no intermediate value.
    study = create_study()
    study.optimize(lambda t: objective(t, False), n_trials=1)
    figure = _get_intermediate_plot(study)
    assert len(figure.data) == 1
    assert len(figure.data[0].x) == 0
    assert len(figure.data[0].y) == 0

    # Ignore failed trials.
    def fail_objective(_):
        # type: (Trial) -> float

        raise ValueError

    study = create_study()
    study.optimize(fail_objective, n_trials=1)
    figure = _get_intermediate_plot(study)
    assert len(figure.data) == 0