Example #1
0
class Test_image_coordinates(unittest.TestCase):
    def setUp(self):
        self.control = ControlParams(4) 
    
        self.calibration = Calibration()
        
    def test_img_coord_typecheck(self):
        
        with self.assertRaises(TypeError):
            list = [[0 for x in range(3)] for x in range(10)]  # initialize a 10x3 list (but not numpy matrix)
            flat_image_coordinates(list, self.control, out=None)
        with self.assertRaises(TypeError):
            flat_image_coordinates(np.empty((10, 2)), self.calibration, self.control.get_multimedia_params(), output=None)
        with self.assertRaises(TypeError):
            image_coordinates(np.empty((10, 3)), self.calibration, self.control.get_multimedia_params(), output=np.zeros((10, 3)))
        with self.assertRaises(TypeError):
            image_coordinates(np.zeros((10, 2)), self.calibration, self.control.get_multimedia_params(), output=np.zeros((10, 2)))
   
    def test_image_coord_regress(self):
        
        self.calibration.set_pos(np.array([0, 0, 40]))
        self.calibration.set_angles(np.array([0, 0, 0]))
        self.calibration.set_primary_point(np.array([0, 0, 10]))
        self.calibration.set_glass_vec(np.array([0, 0, 20]))
        self.calibration.set_radial_distortion(np.array([0, 0, 0]))
        self.calibration.set_decentering(np.array([0, 0]))
        self.calibration.set_affine_trans(np.array([1, 0]))

        self.mult = MultimediaParams(n1=1,
                                     n2=np.array([1]),
                                     n3=1,
                                     d=np.array([1]))
        
        input = np.array([[10., 5., -20.],
                          [10., 5., -20.]])  # vec3d
        output = np.zeros((2, 2))
        
        x = 10. / 6.
        y = x / 2.
        correct_output = np.array([[x, y],
                                   [x, y]])

        flat_image_coordinates(input=input, cal=self.calibration, mult_params=self.mult, output=output)
        np.testing.assert_array_equal(output, correct_output)
        
        output=np.full((2,2), 999.)
        image_coordinates(input=input, cal=self.calibration, mult_params=self.mult, output=output)

        np.testing.assert_array_equal(output, correct_output)
Example #2
0
    def test_full_corresp(self):
        """Full scene correspondences"""
        cpar = ControlParams(4)
        cpar.read_control_par(r"testing_fodder/corresp/control.par")
        vpar = VolumeParams()
        vpar.read_volume_par(r"testing_fodder/corresp/criteria.par")

        # Cameras are at so high angles that opposing cameras don't see each
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.0001], [1.])
        cpar.get_multimedia_params().set_n3(1.0001)

        cals = []
        img_pts = []
        corrected = []
        for c in xrange(4):
            cal = Calibration()
            cal.from_file(
                "testing_fodder/calibration/sym_cam%d.tif.ori" % (c + 1),
                "testing_fodder/calibration/cam1.tif.addpar")
            cals.append(cal)

            # Generate test targets.
            targs = TargetArray(16)
            for row, col in np.ndindex(4, 4):
                targ_ix = row * 4 + col
                # Avoid symmetric case:
                if (c % 2):
                    targ_ix = 15 - targ_ix
                targ = targs[targ_ix]

                pos3d = 10 * np.array([[col, row, 0]], dtype=np.float64)
                pos2d = image_coordinates(pos3d, cal,
                                          cpar.get_multimedia_params())
                targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])

                targ.set_pnr(targ_ix)
                targ.set_pixel_counts(25, 5, 5)
                targ.set_sum_grey_value(10)

            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)

        sorted_pos, sorted_corresp, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 16)
Example #3
0
 def test_full_corresp(self):
     """Full scene correspondences"""
     print "about to dump core"
     cpar = ControlParams(4)
     cpar.read_control_par("testing_fodder/corresp/control.par")
     vpar = VolumeParams()
     vpar.read_volume_par("testing_fodder/corresp/criteria.par")
     
     # Cameras are at so high angles that opposing cameras don't see each 
     # other in the normal air-glass-water setting.
     cpar.get_multimedia_params().set_layers([1.0001], [1.])
     cpar.get_multimedia_params().set_n3(1.0001)
     
     cals = []
     img_pts = []
     corrected = []
     for c in xrange(4):
         cal = Calibration()
         cal.from_file(
             "testing_fodder/calibration/sym_cam%d.tif.ori" % (c + 1),
             "testing_fodder/calibration/cam1.tif.addpar")
         cals.append(cal)
     
         # Generate test targets.
         targs = TargetArray(16)
         for row, col in np.ndindex(4, 4):
             targ_ix = row*4 + col
             # Avoid symmetric case:
             if (c % 2):
                 targ_ix = 15 - targ_ix
             targ = targs[targ_ix]
             
             pos3d = 10*np.array([[col, row, 0]], dtype=np.float64)
             pos2d = image_coordinates(
                 pos3d, cal, cpar.get_multimedia_params())
             targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])
             
             targ.set_pnr(targ_ix)
             targ.set_pixel_counts(25, 5, 5)
             targ.set_sum_grey_value(10)
         
         img_pts.append(targs)
         mc = MatchedCoords(targs, cpar, cal)
         corrected.append(mc)
     
     sorted_pos, sorted_corresp, num_targs = correspondences(
         img_pts, corrected, cals, vpar, cpar)
     self.failUnlessEqual(num_targs, 16)
Example #4
0
    def test_single_cam_corresp(self):
        """Single camera correspondence"""
        cpar = ControlParams(1)
        cpar.read_control_par(b"testing_fodder/single_cam/parameters/ptv.par")
        vpar = VolumeParams()
        vpar.read_volume_par(b"testing_fodder/single_cam/parameters/criteria.par")
        
        # Cameras are at so high angles that opposing cameras don't see each 
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.], [1.])
        cpar.get_multimedia_params().set_n3(1.)
        
        cals = []
        img_pts = []
        corrected = []
        cal = Calibration()
        cal.from_file(
            b"testing_fodder/single_cam/calibration/cam_1.tif.ori",
            b"testing_fodder/single_cam/calibration/cam_1.tif.addpar")
        cals.append(cal)
        
        # Generate test targets.
        targs = TargetArray(9)
        for row, col in np.ndindex(3, 3):
            targ_ix = row*3 + col
            targ = targs[targ_ix]
            
            pos3d = 10*np.array([[col, row, 0]], dtype=np.float64)
            pos2d = image_coordinates(
                pos3d, cal, cpar.get_multimedia_params())
            targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])
            
            targ.set_pnr(targ_ix)
            targ.set_pixel_counts(25, 5, 5)
            targ.set_sum_grey_value(10)
            
            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)
        
        _, _, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 9)
Example #5
0
    def test_single_cam_corresp(self):
        """Single camera correspondence"""
        cpar = ControlParams(1)
        cpar.read_control_par("testing_fodder/single_cam/parameters/ptv.par")
        vpar = VolumeParams()
        vpar.read_volume_par(
            "testing_fodder/single_cam/parameters/criteria.par")

        # Cameras are at so high angles that opposing cameras don't see each
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.], [1.])
        cpar.get_multimedia_params().set_n3(1.)

        cals = []
        img_pts = []
        corrected = []
        cal = Calibration()
        cal.from_file(
            "testing_fodder/single_cam/calibration/cam_1.tif.ori",
            "testing_fodder/single_cam/calibration/cam_1.tif.addpar")
        cals.append(cal)

        # Generate test targets.
        targs = TargetArray(9)
        for row, col in np.ndindex(3, 3):
            targ_ix = row * 3 + col
            targ = targs[targ_ix]

            pos3d = 10 * np.array([[col, row, 0]], dtype=np.float64)
            pos2d = image_coordinates(pos3d, cal, cpar.get_multimedia_params())
            targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])

            targ.set_pnr(targ_ix)
            targ.set_pixel_counts(25, 5, 5)
            targ.set_sum_grey_value(10)

            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)

        sorted_pos, sorted_corresp, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 9)
Example #6
0
    def test_single_camera_point_positions(self):
        """Point positions for a single camera case"""

        num_cams = 1
        # prepare MultimediaParams
        cpar_file = b'testing_fodder/single_cam/parameters/ptv.par'
        vpar_file = b'testing_fodder/single_cam/parameters/criteria.par'
        cpar = ControlParams(num_cams)
        cpar.read_control_par(cpar_file)
        mult_params = cpar.get_multimedia_params()

        vpar = VolumeParams()
        vpar.read_volume_par(vpar_file)

        ori_name = b'testing_fodder/single_cam/calibration/cam_1.tif.ori'
        add_name = b'testing_fodder/single_cam/calibration/cam_1.tif.addpar'
        calibs = []


        # read calibration for each camera from files
        new_cal = Calibration()
        new_cal.from_file(ori_file=ori_name, add_file=add_name)
        calibs.append(new_cal)


        # 3d point
        points = np.array([[1, 1, 0],
                           [-1, -1, 0]], dtype=float)

        targs_plain = []
        targs_jigged = []


        jigg_amp = 0.4


        new_plain_targ = image_coordinates(
            points, calibs[0], mult_params)
        targs_plain.append(new_plain_targ)

        jigged_points = points - np.r_[0, jigg_amp, 0]

        new_jigged_targs = image_coordinates(
            jigged_points, calibs[0], mult_params)
        targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1,0,2)
        targs_jigged = np.array(targs_jigged).transpose(1,0,2)
        skew_dist_plain = point_positions(targs_plain, cpar, calibs, vpar)
        skew_dist_jigged = point_positions(targs_jigged, cpar, calibs, vpar)

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(np.linalg.norm(jigged_points - skew_dist_jigged[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position after jigging.')
    def test_single_camera_point_positions(self):
        """Point positions for a single camera case"""

        num_cams = 1
        # prepare MultimediaParams
        cpar_file = b'testing_fodder/single_cam/parameters/ptv.par'
        vpar_file = b'testing_fodder/single_cam/parameters/criteria.par'
        cpar = ControlParams(num_cams)
        cpar.read_control_par(cpar_file)
        mult_params = cpar.get_multimedia_params()

        vpar = VolumeParams()
        vpar.read_volume_par(vpar_file)

        ori_name = b'testing_fodder/single_cam/calibration/cam_1.tif.ori'
        add_name = b'testing_fodder/single_cam/calibration/cam_1.tif.addpar'
        calibs = []

        # read calibration for each camera from files
        new_cal = Calibration()
        new_cal.from_file(ori_file=ori_name, add_file=add_name)
        calibs.append(new_cal)

        # 3d point
        points = np.array([[1, 1, 0], [-1, -1, 0]], dtype=float)

        targs_plain = []
        targs_jigged = []

        jigg_amp = 0.4

        new_plain_targ = image_coordinates(points, calibs[0], mult_params)
        targs_plain.append(new_plain_targ)

        jigged_points = points - np.r_[0, jigg_amp, 0]

        new_jigged_targs = image_coordinates(jigged_points, calibs[0],
                                             mult_params)
        targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1, 0, 2)
        targs_jigged = np.array(targs_jigged).transpose(1, 0, 2)
        skew_dist_plain = point_positions(targs_plain, cpar, calibs, vpar)
        skew_dist_jigged = point_positions(targs_jigged, cpar, calibs, vpar)

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(
                np.linalg.norm(jigged_points -
                               skew_dist_jigged[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position after jigging.')
 def test_instantiate_fast(self):
     """ControlParams instantiation through constructor"""
     cp = ControlParams(4, ['headers', 'hp', 'allcam'], (1280, 1024), 
         (15.15,16.16), 18, [19.19], [21.21], 20.20)
     
     self.failUnless(cp.get_num_cams() == 4)
     self.failUnless(cp.get_hp_flag())
     self.failUnless(cp.get_allCam_flag())
     self.failUnless(cp.get_tiff_flag())
     self.failUnless(cp.get_image_size(), (1280, 1024))
     self.failUnless(cp.get_pixel_size() == (15.15,16.16))
     self.failUnless(cp.get_chfield() == 0)
     
     mm = cp.get_multimedia_params()
     self.failUnless(mm.get_n1() == 18)
     self.failUnless(mm.get_n2()[0] == 19.19)
     self.failUnless(mm.get_n3() == 20.20)
     self.failUnless(mm.get_d()[0] == 21.21)
Example #9
0
 def test_instantiate_fast(self):
     """ControlParams instantiation through constructor"""
     cp = ControlParams(4, ['headers', 'hp', 'allcam'], (1280, 1024), 
         (15.15,16.16), 18, [19.19], [21.21], 20.20)
     
     self.failUnless(cp.get_num_cams() == 4)
     self.failUnless(cp.get_hp_flag())
     self.failUnless(cp.get_allCam_flag())
     self.failUnless(cp.get_tiff_flag())
     self.failUnless(cp.get_image_size(), (1280, 1024))
     self.failUnless(cp.get_pixel_size() == (15.15,16.16))
     self.failUnless(cp.get_chfield() == 0)
     
     mm = cp.get_multimedia_params()
     self.failUnless(mm.get_n1() == 18)
     self.failUnless(mm.get_n2()[0] == 19.19)
     self.failUnless(mm.get_n3() == 20.20)
     self.failUnless(mm.get_d()[0] == 21.21)
    def test_two_cameras(self):
        ori_tmpl = "testing_fodder/calibration/sym_cam{cam_num}.tif.ori"
        add_file = "testing_fodder/calibration/cam1.tif.addpar"

        orig_cal = Calibration()
        orig_cal.from_file(
            ori_tmpl.format(cam_num=1).encode(), add_file.encode())
        proj_cal = Calibration()
        proj_cal.from_file(
            ori_tmpl.format(cam_num=3).encode(), add_file.encode())

        # reorient cams:
        orig_cal.set_angles(np.r_[0., -np.pi / 4., 0.])
        proj_cal.set_angles(np.r_[0., 3 * np.pi / 4., 0.])

        cpar = ControlParams(4)
        cpar.read_control_par(b"testing_fodder/corresp/control.par")
        sens_size = cpar.get_image_size()

        vpar = VolumeParams()
        vpar.read_volume_par(b"testing_fodder/corresp/criteria.par")
        vpar.set_Zmin_lay([-10, -10])
        vpar.set_Zmax_lay([10, 10])

        mult_params = cpar.get_multimedia_params()
        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # Central point translates to central point because cameras point
        # directly at each other.
        mid = np.r_[sens_size] / 2.
        line = epipolar_curve(mid, orig_cal, proj_cal, 5, cpar, vpar)
        self.failUnless(np.all(abs(line - mid) < 1e-6))

        # An equatorial point draws a latitude.
        line = epipolar_curve(mid - np.r_[100., 0.], orig_cal, proj_cal, 5,
                              cpar, vpar)
        np.testing.assert_array_equal(np.argsort(line[:, 0]),
                                      np.arange(5)[::-1])
        self.failUnless(np.all(abs(line[:, 1] - mid[1]) < 1e-6))
Example #11
0
 def test_two_cameras(self):
     ori_tmpl = "testing_fodder/calibration/sym_cam{cam_num}.tif.ori"
     add_file = "testing_fodder/calibration/cam1.tif.addpar"
     
     orig_cal = Calibration()
     orig_cal.from_file(ori_tmpl.format(cam_num=1).encode(), add_file.encode())
     proj_cal = Calibration()
     proj_cal.from_file(ori_tmpl.format(cam_num=3).encode(), add_file.encode())
     
     # reorient cams:
     orig_cal.set_angles(np.r_[0., -np.pi/4., 0.])
     proj_cal.set_angles(np.r_[0., 3*np.pi/4., 0.])
     
     cpar = ControlParams(4)
     cpar.read_control_par(b"testing_fodder/corresp/control.par")
     sens_size = cpar.get_image_size()
     
     vpar = VolumeParams()
     vpar.read_volume_par(b"testing_fodder/corresp/criteria.par")
     vpar.set_Zmin_lay([-10, -10])
     vpar.set_Zmax_lay([10, 10])
     
     mult_params = cpar.get_multimedia_params()
     mult_params.set_n1(1.)
     mult_params.set_layers(np.array([1.]), np.array([1.]))
     mult_params.set_n3(1.)
     
     # Central point translates to central point because cameras point 
     # directly at each other.
     mid = np.r_[sens_size]/2.
     line = epipolar_curve(mid, orig_cal, proj_cal, 5, cpar, vpar)
     self.failUnless(np.all(abs(line - mid) < 1e-6))
     
     # An equatorial point draws a latitude.
     line = epipolar_curve(
         mid - np.r_[100., 0.], orig_cal, proj_cal, 5, cpar, vpar)
     np.testing.assert_array_equal(np.argsort(line[:,0]), np.arange(5)[::-1])
     self.failUnless(np.all(abs(line[:,1] - mid[1]) < 1e-6))
Example #12
0
part_traject = np.zeros((num_frames, 3))
part_traject[:, 0] = np.r_[:num_frames] * velocity

# Find targets on each camera.
cpar = ControlParams(3)
cpar.read_control_par("testing_fodder/track/parameters/control_newpart.par")

targs = []
for cam in xrange(num_cams):
    cal = Calibration()
    cal.from_file("testing_fodder/cal/sym_cam%d.tif.ori" % (cam + 1),
                  "testing_fodder/cal/cam1.tif.addpar")
    targs.append(
        convert_arr_metric_to_pixel(
            image_coordinates(part_traject, cal, cpar.get_multimedia_params()),
            cpar))

for frame in xrange(num_frames):
    # write 3D positions:
    with open("testing_fodder/track/res_orig/particles.%d" % (frame + 1),
              "w") as outfile:
        # Note correspondence to the single target in each frame.
        outfile.writelines([
            str(1) + "\n",
            "{:5d}{:10.3f}{:10.3f}{:10.3f}{:5d}{:5d}{:5d}{:5d}\n".format(
                1, part_traject[frame, 0], part_traject[frame, 1],
                part_traject[frame, 1], 0, 0, 0, 0)
        ])

    # write associated targets from all cameras:
Example #13
0
class Test_ControlParams(unittest.TestCase):
    def setUp(self):
        self.input_control_par_file_name = "testing_fodder/control_parameters/control.par"
        self.temp_output_directory = "testing_fodder/control_parameters/testing_output"
        
        # create a temporary output directory (will be deleted by the end of test)
        if not os.path.exists(self.temp_output_directory):
            os.makedirs(self.temp_output_directory)
        # create an instance of ControlParams class
        self.cp_obj = ControlParams(4)
        
    def test_read_control(self):
        # Fill the ControlParams object with parameters from test file
        self.cp_obj.read_control_par(self.input_control_par_file_name)
        # check if all parameters are equal to the contents of test file
        self.failUnless(self.cp_obj.get_img_base_name(0) == "dumbbell/cam1_Scene77_4085") 
        self.failUnless(self.cp_obj.get_img_base_name(1) == "dumbbell/cam2_Scene77_4085")
        self.failUnless(self.cp_obj.get_img_base_name(2) == "dumbbell/cam3_Scene77_4085")
        self.failUnless(self.cp_obj.get_img_base_name(3) == "dumbbell/cam4_Scene77_4085")
        
        self.failUnless(self.cp_obj.get_cal_img_base_name(0) == "cal/cam1.tif")
        self.failUnless(self.cp_obj.get_cal_img_base_name(1) == "cal/cam2.tif")
        self.failUnless(self.cp_obj.get_cal_img_base_name(2) == "cal/cam3.tif")
        self.failUnless(self.cp_obj.get_cal_img_base_name(3) == "cal/cam4.tif")
        
        self.failUnless(self.cp_obj.get_num_cams() == 4)
        self.failUnless(self.cp_obj.get_hp_flag())
        self.failUnless(self.cp_obj.get_allCam_flag())
        self.failUnless(self.cp_obj.get_tiff_flag())
        self.failUnless(self.cp_obj.get_image_size(), (1280, 1024))
        self.failUnless(self.cp_obj.get_pixel_size() == (15.15,16.16))
        self.failUnless(self.cp_obj.get_chfield() == 17)
        
        self.failUnless(self.cp_obj.get_multimedia_params().get_n1() == 18)
        self.failUnless(self.cp_obj.get_multimedia_params().get_n2()[0] == 19.19)
        self.failUnless(self.cp_obj.get_multimedia_params().get_n3() == 20.20)
        self.failUnless(self.cp_obj.get_multimedia_params().get_d()[0] == 21.21)
     
    def test_instantiate_fast(self):
        """ControlParams instantiation through constructor"""
        cp = ControlParams(4, ['headers', 'hp', 'allcam'], (1280, 1024), 
            (15.15,16.16), 18, [19.19], [21.21], 20.20)
        
        self.failUnless(cp.get_num_cams() == 4)
        self.failUnless(cp.get_hp_flag())
        self.failUnless(cp.get_allCam_flag())
        self.failUnless(cp.get_tiff_flag())
        self.failUnless(cp.get_image_size(), (1280, 1024))
        self.failUnless(cp.get_pixel_size() == (15.15,16.16))
        self.failUnless(cp.get_chfield() == 0)
        
        mm = cp.get_multimedia_params()
        self.failUnless(mm.get_n1() == 18)
        self.failUnless(mm.get_n2()[0] == 19.19)
        self.failUnless(mm.get_n3() == 20.20)
        self.failUnless(mm.get_d()[0] == 21.21)
        
        
    def test_getters_setters(self):
        cams_num = 4
        for cam in range(cams_num):
            new_str = str(cam) + "some string" + str(cam)
            
            self.cp_obj.set_img_base_name(cam, new_str)
            self.failUnless(self.cp_obj.get_img_base_name(cam) == new_str)
            
            self.cp_obj.set_cal_img_base_name(cam, new_str)
            self.failUnless(self.cp_obj.get_cal_img_base_name(cam) == new_str)
        
        self.cp_obj.set_hp_flag(True)
        self.failUnless(self.cp_obj.get_hp_flag())
        self.cp_obj.set_hp_flag(False)
        self.failUnless(not self.cp_obj.get_hp_flag())
        
        self.cp_obj.set_allCam_flag(True)
        self.failUnless(self.cp_obj.get_allCam_flag())
        self.cp_obj.set_allCam_flag(False)
        self.failUnless(not self.cp_obj.get_allCam_flag())
        
        self.cp_obj.set_tiff_flag(True)
        self.failUnless(self.cp_obj.get_tiff_flag())
        self.cp_obj.set_tiff_flag(False)
        self.failUnless(not self.cp_obj.get_tiff_flag())
        
        self.cp_obj.set_image_size((4, 5))
        self.failUnless(self.cp_obj.get_image_size()== (4, 5))
        print self.cp_obj.get_pixel_size()
        self.cp_obj.set_pixel_size((6.1, 7.0))
        numpy.testing.assert_array_equal(self.cp_obj.get_pixel_size(), (6.1, 7))
        
        self.cp_obj.set_chfield(8)
        self.failUnless(self.cp_obj.get_chfield() == 8)
         
    # testing __richcmp__ comparison method of ControlParams class
    def test_rich_compare(self):
        self.cp_obj2 = ControlParams(4)
        self.cp_obj2.read_control_par(self.input_control_par_file_name)
        
        self.cp_obj3 = ControlParams(4)
        self.cp_obj3.read_control_par(self.input_control_par_file_name)
           
        self.failUnless(self.cp_obj2 == self.cp_obj3)
        self.failIf(self.cp_obj2 != self.cp_obj3)
           
        self.cp_obj2.set_hp_flag(False)
        self.failUnless(self.cp_obj2 != self.cp_obj3)
        self.failIf(self.cp_obj2 == self.cp_obj3)
        
        with self.assertRaises(TypeError):
            var = (self.cp_obj2 > self.cp_obj3)  # unhandled operator > 
      
    def tearDown(self):
        # remove the testing output directory and its files
        shutil.rmtree(self.temp_output_directory)        
Example #14
0
class TestGradientDescent(unittest.TestCase):
    # Based on the C tests in liboptv/tests/check_orientation.c

    def setUp(self):
        control_file_name = r'testing_fodder/corresp/control.par'
        self.control = ControlParams(4)
        self.control.read_control_par(control_file_name)

        self.cal = Calibration()
        self.cal.from_file("testing_fodder/calibration/cam1.tif.ori",
                           "testing_fodder/calibration/cam1.tif.addpar")
        self.orig_cal = Calibration()
        self.orig_cal.from_file("testing_fodder/calibration/cam1.tif.ori",
                                "testing_fodder/calibration/cam1.tif.addpar")

    def test_external_calibration(self):
        """External calibration using clicked points."""
        ref_pts = np.array([[-40., -25., 8.], [40., -15., 0.], [40., 15., 0.],
                            [40., 0., 8.]])

        # Fake the image points by back-projection
        targets = convert_arr_metric_to_pixel(
            image_coordinates(ref_pts, self.cal,
                              self.control.get_multimedia_params()),
            self.control)

        # Jigg the fake detections to give raw_orient some challenge.
        targets[:, 1] -= 0.1

        self.assertTrue(
            external_calibration(self.cal, ref_pts, targets, self.control))
        np.testing.assert_array_almost_equal(self.cal.get_angles(),
                                             self.orig_cal.get_angles(),
                                             decimal=4)
        np.testing.assert_array_almost_equal(self.cal.get_pos(),
                                             self.orig_cal.get_pos(),
                                             decimal=3)

    def test_full_calibration(self):
        ref_pts = np.array([
            a.flatten() for a in np.meshgrid(np.r_[-60:-30:4j], np.r_[0:15:4j],
                                             np.r_[0:15:4j])
        ]).T

        # Fake the image points by back-projection
        targets = convert_arr_metric_to_pixel(
            image_coordinates(ref_pts, self.cal,
                              self.control.get_multimedia_params()),
            self.control)

        # Full calibration works with TargetArray objects, not NumPy.
        target_array = TargetArray(len(targets))
        for i in xrange(len(targets)):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(targets[i])

        # Perturb the calibration object, then compore result to original.
        self.cal.set_pos(self.cal.get_pos() + np.r_[15., -15., 15.])
        self.cal.set_angles(self.cal.get_angles() + np.r_[-.5, .5, -.5])

        ret, used, err_est = full_calibration(self.cal, ref_pts, target_array,
                                              self.control)

        np.testing.assert_array_almost_equal(self.cal.get_angles(),
                                             self.orig_cal.get_angles(),
                                             decimal=4)
        np.testing.assert_array_almost_equal(self.cal.get_pos(),
                                             self.orig_cal.get_pos(),
                                             decimal=3)
Example #15
0
class Test_Orientation(unittest.TestCase):
    def setUp(self):
        self.input_ori_file_name = r'testing_fodder/calibration/cam1.tif.ori'
        self.input_add_file_name = r'testing_fodder/calibration/cam2.tif.addpar'
        self.control_file_name = r'testing_fodder/control_parameters/control.par'

        self.calibration = Calibration()
        self.calibration.from_file(self.input_ori_file_name,
                                   self.input_add_file_name)
        self.control = ControlParams(4)
        self.control.read_control_par(self.control_file_name)

    def test_match_detection_to_ref(self):
        """Match detection to reference (sortgrid)"""
        xyz_input = np.array([(10, 10, 10), (200, 200, 200), (600, 800, 100),
                              (20, 10, 2000), (30, 30, 30)],
                             dtype=float)
        coords_count = len(xyz_input)

        xy_img_pts_metric = image_coordinates(
            xyz_input, self.calibration, self.control.get_multimedia_params())
        xy_img_pts_pixel = convert_arr_metric_to_pixel(xy_img_pts_metric,
                                                       control=self.control)

        # convert to TargetArray object
        target_array = TargetArray(coords_count)

        for i in range(coords_count):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(
                (xy_img_pts_pixel[i][0], xy_img_pts_pixel[i][1]))

        # create randomized target array
        indices = range(coords_count)
        shuffled_indices = range(coords_count)

        while indices == shuffled_indices:
            random.shuffle(shuffled_indices)

        rand_targ_array = TargetArray(coords_count)
        for i in range(coords_count):
            rand_targ_array[shuffled_indices[i]].set_pos(target_array[i].pos())
            rand_targ_array[shuffled_indices[i]].set_pnr(target_array[i].pnr())

        # match detection to reference
        matched_target_array = match_detection_to_ref(cal=self.calibration,
                                                      ref_pts=xyz_input,
                                                      img_pts=rand_targ_array,
                                                      cparam=self.control)

        # assert target array is as before
        for i in range(coords_count):
            if matched_target_array[i].pos() != target_array[i].pos() \
                    or matched_target_array[i].pnr() != target_array[i].pnr():
                self.fail()

        # pass ref_pts and img_pts with non-equal lengths
        with self.assertRaises(ValueError):
            match_detection_to_ref(cal=self.calibration,
                                   ref_pts=xyz_input,
                                   img_pts=TargetArray(coords_count - 1),
                                   cparam=self.control)

    def test_point_positions(self):
        """Point positions"""
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()

        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17, 42, 0], [17, 42, 0]], dtype=float)

        num_cams = 4
        ori_tmpl = r'testing_fodder/calibration/sym_cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []
        targs_jigged = []

        jigg_amp = 0.5

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)

            if (cam_num % 2) == 0:
                jigged_points = points - np.r_[0, jigg_amp, 0]
            else:
                jigged_points = points + np.r_[0, jigg_amp, 0]

            new_jigged_targs = image_coordinates(
                jigged_points, cam_cal, self.control.get_multimedia_params())
            targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1, 0, 2)
        targs_jigged = np.array(targs_jigged).transpose(1, 0, 2)
        skew_dist_plain = point_positions(targs_plain, self.control, calibs)
        skew_dist_jigged = point_positions(targs_jigged, self.control, calibs)

        if np.any(skew_dist_plain[1] > 1e-10):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_plain[1] > 1e-10)[0][0]))

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(skew_dist_jigged[1] > 0.7):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_jigged[1] > 1e-10)[0][0]))
        if np.any(np.linalg.norm(points - skew_dist_jigged[0], axis=1) > 0.1):
            self.fail('Rays converge on wrong position after jigging.')

    def test_dumbbell(self):
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()
        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17.5, 42, 0], [-17.5, 42, 0]], dtype=float)

        num_cams = 4
        ori_tmpl = r'testing_fodder/dumbbell/cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = flat_image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)

        targs_plain = np.array(targs_plain).transpose(1, 0, 2)

        # The cameras are not actually fully calibrated, so the result is not
        # an exact 0. The test is that changing the expected distance changes
        # the measure.
        tf = dumbbell_target_func(targs_plain, self.control, calibs, 35., 0.)
        self.assertAlmostEqual(tf, 7.14860, 5)  # just a regression test

        # As we check the db length, the measure increases...
        tf_len = dumbbell_target_func(targs_plain, self.control, calibs, 35.,
                                      1.)
        self.assertTrue(tf_len > tf)

        # ...but not as much as when giving the wrong length.
        tf_too_long = dumbbell_target_func(targs_plain, self.control, calibs,
                                           25., 1.)
        self.assertTrue(tf_too_long > tf_len > tf)
class Test_ControlParams(unittest.TestCase):
    def setUp(self):
        self.input_control_par_file_name = "testing_fodder/control_parameters/control.par"
        self.temp_output_directory = "testing_fodder/control_parameters/testing_output"
        
        # create a temporary output directory (will be deleted by the end of test)
        if not os.path.exists(self.temp_output_directory):
            os.makedirs(self.temp_output_directory)
        # create an instance of ControlParams class
        self.cp_obj = ControlParams(4)
        
    def test_read_control(self):
        # Fill the ControlParams object with parameters from test file
        self.cp_obj.read_control_par(self.input_control_par_file_name)
        # check if all parameters are equal to the contents of test file
        self.failUnless(self.cp_obj.get_img_base_name(0) == "dumbbell/cam1_Scene77_4085") 
        self.failUnless(self.cp_obj.get_img_base_name(1) == "dumbbell/cam2_Scene77_4085")
        self.failUnless(self.cp_obj.get_img_base_name(2) == "dumbbell/cam3_Scene77_4085")
        self.failUnless(self.cp_obj.get_img_base_name(3) == "dumbbell/cam4_Scene77_4085")
        
        self.failUnless(self.cp_obj.get_cal_img_base_name(0) == "cal/cam1.tif")
        self.failUnless(self.cp_obj.get_cal_img_base_name(1) == "cal/cam2.tif")
        self.failUnless(self.cp_obj.get_cal_img_base_name(2) == "cal/cam3.tif")
        self.failUnless(self.cp_obj.get_cal_img_base_name(3) == "cal/cam4.tif")
        
        self.failUnless(self.cp_obj.get_num_cams() == 4)
        self.failUnless(self.cp_obj.get_hp_flag())
        self.failUnless(self.cp_obj.get_allCam_flag())
        self.failUnless(self.cp_obj.get_tiff_flag())
        self.failUnless(self.cp_obj.get_image_size(), (1280, 1024))
        self.failUnless(self.cp_obj.get_pixel_size() == (15.15,16.16))
        self.failUnless(self.cp_obj.get_chfield() == 17)
        
        self.failUnless(self.cp_obj.get_multimedia_params().get_n1() == 18)
        self.failUnless(self.cp_obj.get_multimedia_params().get_n2()[0] == 19.19)
        self.failUnless(self.cp_obj.get_multimedia_params().get_n3() == 20.20)
        self.failUnless(self.cp_obj.get_multimedia_params().get_d()[0] == 21.21)
     
    def test_instantiate_fast(self):
        """ControlParams instantiation through constructor"""
        cp = ControlParams(4, ['headers', 'hp', 'allcam'], (1280, 1024), 
            (15.15,16.16), 18, [19.19], [21.21], 20.20)
        
        self.failUnless(cp.get_num_cams() == 4)
        self.failUnless(cp.get_hp_flag())
        self.failUnless(cp.get_allCam_flag())
        self.failUnless(cp.get_tiff_flag())
        self.failUnless(cp.get_image_size(), (1280, 1024))
        self.failUnless(cp.get_pixel_size() == (15.15,16.16))
        self.failUnless(cp.get_chfield() == 0)
        
        mm = cp.get_multimedia_params()
        self.failUnless(mm.get_n1() == 18)
        self.failUnless(mm.get_n2()[0] == 19.19)
        self.failUnless(mm.get_n3() == 20.20)
        self.failUnless(mm.get_d()[0] == 21.21)
        
        
    def test_getters_setters(self):
        cams_num = 4
        for cam in range(cams_num):
            new_str = str(cam) + "some string" + str(cam)
            
            self.cp_obj.set_img_base_name(cam, new_str)
            self.failUnless(self.cp_obj.get_img_base_name(cam) == new_str)
            
            self.cp_obj.set_cal_img_base_name(cam, new_str)
            self.failUnless(self.cp_obj.get_cal_img_base_name(cam) == new_str)
        
        self.cp_obj.set_hp_flag(True)
        self.failUnless(self.cp_obj.get_hp_flag())
        self.cp_obj.set_hp_flag(False)
        self.failUnless(not self.cp_obj.get_hp_flag())
        
        self.cp_obj.set_allCam_flag(True)
        self.failUnless(self.cp_obj.get_allCam_flag())
        self.cp_obj.set_allCam_flag(False)
        self.failUnless(not self.cp_obj.get_allCam_flag())
        
        self.cp_obj.set_tiff_flag(True)
        self.failUnless(self.cp_obj.get_tiff_flag())
        self.cp_obj.set_tiff_flag(False)
        self.failUnless(not self.cp_obj.get_tiff_flag())
        
        self.cp_obj.set_image_size((4, 5))
        self.failUnless(self.cp_obj.get_image_size()== (4, 5))
        print self.cp_obj.get_pixel_size()
        self.cp_obj.set_pixel_size((6.1, 7.0))
        numpy.testing.assert_array_equal(self.cp_obj.get_pixel_size(), (6.1, 7))
        
        self.cp_obj.set_chfield(8)
        self.failUnless(self.cp_obj.get_chfield() == 8)
         
    # testing __richcmp__ comparison method of ControlParams class
    def test_rich_compare(self):
        self.cp_obj2 = ControlParams(4)
        self.cp_obj2.read_control_par(self.input_control_par_file_name)
        
        self.cp_obj3 = ControlParams(4)
        self.cp_obj3.read_control_par(self.input_control_par_file_name)
           
        self.failUnless(self.cp_obj2 == self.cp_obj3)
        self.failIf(self.cp_obj2 != self.cp_obj3)
           
        self.cp_obj2.set_hp_flag(False)
        self.failUnless(self.cp_obj2 != self.cp_obj3)
        self.failIf(self.cp_obj2 == self.cp_obj3)
        
        with self.assertRaises(TypeError):
            var = (self.cp_obj2 > self.cp_obj3)  # unhandled operator > 
      
    def tearDown(self):
        # remove the testing output directory and its files
        shutil.rmtree(self.temp_output_directory)        
Example #17
0
class TestGradientDescent(unittest.TestCase):
    # Based on the C tests in liboptv/tests/check_orientation.c
    
    def setUp(self):
        control_file_name = r'testing_fodder/corresp/control.par'
        self.control = ControlParams(4)
        self.control.read_control_par(control_file_name)
        
        self.cal = Calibration()
        self.cal.from_file(
            "testing_fodder/calibration/cam1.tif.ori", 
            "testing_fodder/calibration/cam1.tif.addpar")
        self.orig_cal = Calibration()
        self.orig_cal.from_file(
            "testing_fodder/calibration/cam1.tif.ori", 
            "testing_fodder/calibration/cam1.tif.addpar")
    
    def test_external_calibration(self):
        """External calibration using clicked points."""
        ref_pts = np.array([
            [-40., -25., 8.],
            [ 40., -15., 0.],
            [ 40.,  15., 0.],
            [ 40.,   0., 8.]])
    
        # Fake the image points by back-projection
        targets = convert_arr_metric_to_pixel(image_coordinates(
            ref_pts, self.cal, self.control.get_multimedia_params()),
            self.control)
        
        # Jigg the fake detections to give raw_orient some challenge.
        targets[:,1] -= 0.1
        
        self.assertTrue(external_calibration(
            self.cal, ref_pts, targets, self.control))
        np.testing.assert_array_almost_equal(
            self.cal.get_angles(), self.orig_cal.get_angles(),
            decimal=4)
        np.testing.assert_array_almost_equal(
            self.cal.get_pos(), self.orig_cal.get_pos(),
            decimal=3)
    
    def test_full_calibration(self):
        ref_pts = np.array([a.flatten() for a in np.meshgrid(
            np.r_[-60:-30:4j], np.r_[0:15:4j], np.r_[0:15:4j])]).T
        
        # Fake the image points by back-projection
        targets = convert_arr_metric_to_pixel(image_coordinates(
            ref_pts, self.cal, self.control.get_multimedia_params()),
            self.control)
        
        # Full calibration works with TargetArray objects, not NumPy.
        target_array = TargetArray(len(targets))
        for i in xrange(len(targets)):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(targets[i])
        
        # Perturb the calibration object, then compore result to original.
        self.cal.set_pos(self.cal.get_pos() + np.r_[15., -15., 15.])
        self.cal.set_angles(self.cal.get_angles() + np.r_[-.5, .5, -.5])
        
        ret, used, err_est = full_calibration(
            self.cal, ref_pts, target_array, self.control)
        
        np.testing.assert_array_almost_equal(
            self.cal.get_angles(), self.orig_cal.get_angles(),
            decimal=4)
        np.testing.assert_array_almost_equal(
            self.cal.get_pos(), self.orig_cal.get_pos(),
            decimal=3)
Example #18
0
class Test_Orientation(unittest.TestCase):
    def setUp(self):
        self.input_ori_file_name = r'testing_fodder/calibration/cam1.tif.ori'
        self.input_add_file_name = r'testing_fodder/calibration/cam2.tif.addpar'
        self.control_file_name = r'testing_fodder/control_parameters/control.par'

        self.calibration = Calibration()
        self.calibration.from_file(
            self.input_ori_file_name, self.input_add_file_name)
        self.control = ControlParams(4)
        self.control.read_control_par(self.control_file_name)

    def test_match_detection_to_ref(self):
        """Match detection to reference (sortgrid)"""
        xyz_input = np.array([(10, 10, 10),
                              (200, 200, 200),
                              (600, 800, 100),
                              (20, 10, 2000),
                              (30, 30, 30)], dtype=float)
        coords_count = len(xyz_input)

        xy_img_pts_metric = image_coordinates(
            xyz_input, self.calibration, self.control.get_multimedia_params())
        xy_img_pts_pixel = convert_arr_metric_to_pixel(
            xy_img_pts_metric, control=self.control)

        # convert to TargetArray object
        target_array = TargetArray(coords_count)

        for i in range(coords_count):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(
                (xy_img_pts_pixel[i][0], xy_img_pts_pixel[i][1]))

        # create randomized target array
        indices = range(coords_count)
        shuffled_indices = range(coords_count)

        while indices == shuffled_indices:
            random.shuffle(shuffled_indices)

        rand_targ_array = TargetArray(coords_count)
        for i in range(coords_count):
            rand_targ_array[shuffled_indices[i]].set_pos(target_array[i].pos())
            rand_targ_array[shuffled_indices[i]].set_pnr(target_array[i].pnr())

        # match detection to reference
        matched_target_array = match_detection_to_ref(cal=self.calibration,
                                                      ref_pts=xyz_input,
                                                      img_pts=rand_targ_array,
                                                      cparam=self.control)

        # assert target array is as before
        for i in range(coords_count):
            if matched_target_array[i].pos() != target_array[i].pos() \
                    or matched_target_array[i].pnr() != target_array[i].pnr():
                self.fail()

        # pass ref_pts and img_pts with non-equal lengths
        with self.assertRaises(ValueError):
            match_detection_to_ref(cal=self.calibration,
                                   ref_pts=xyz_input,
                                   img_pts=TargetArray(coords_count - 1),
                                   cparam=self.control)

    def test_point_positions(self):
        """Point positions"""
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()

        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17, 42, 0],
                           [17, 42, 0]], dtype=float)
        
        num_cams = 4
        ori_tmpl = r'testing_fodder/calibration/sym_cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []
        targs_jigged = []

        jigg_amp = 0.5

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)
            
            if (cam_num % 2) == 0:
                jigged_points = points - np.r_[0, jigg_amp, 0]
            else:
                jigged_points = points + np.r_[0, jigg_amp, 0]

            new_jigged_targs = image_coordinates(
                jigged_points, cam_cal, self.control.get_multimedia_params())
            targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1,0,2)
        targs_jigged = np.array(targs_jigged).transpose(1,0,2)
        skew_dist_plain = point_positions(targs_plain, self.control, calibs)
        skew_dist_jigged = point_positions(targs_jigged, self.control, calibs)

        if np.any(skew_dist_plain[1] > 1e-10):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_plain[1] > 1e-10)[0][0]))

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(skew_dist_jigged[1] > 0.7):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_jigged[1] > 1e-10)[0][0]))
        if np.any(np.linalg.norm(points - skew_dist_jigged[0], axis=1) > 0.1):
            self.fail('Rays converge on wrong position after jigging.')
    
    def test_dumbbell(self):
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()
        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17.5, 42, 0],
                           [-17.5, 42, 0]], dtype=float)
        
        num_cams = 4
        ori_tmpl = r'testing_fodder/dumbbell/cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = flat_image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)

        targs_plain = np.array(targs_plain).transpose(1,0,2)
        
        # The cameras are not actually fully calibrated, so the result is not 
        # an exact 0. The test is that changing the expected distance changes 
        # the measure.
        tf = dumbbell_target_func(targs_plain, self.control, calibs, 35., 0.)
        self.assertAlmostEqual(tf, 7.14860, 5) # just a regression test
        
        # As we check the db length, the measure increases...
        tf_len = dumbbell_target_func(
            targs_plain, self.control, calibs, 35., 1.)
        self.assertTrue(tf_len > tf)
        
        # ...but not as much as when giving the wrong length.
        tf_too_long = dumbbell_target_func(
            targs_plain, self.control, calibs, 25., 1.)
        self.assertTrue(tf_too_long > tf_len > tf)
Example #19
0
class Test_image_coordinates(unittest.TestCase):
    def setUp(self):
        self.control = ControlParams(4)

        self.calibration = Calibration()

    def test_img_coord_typecheck(self):

        with self.assertRaises(TypeError):
            list = [[0 for x in range(3)] for x in range(10)
                    ]  # initialize a 10x3 list (but not numpy matrix)
            flat_image_coordinates(list, self.control, out=None)
        with self.assertRaises(TypeError):
            flat_image_coordinates(np.empty((10, 2)),
                                   self.calibration,
                                   self.control.get_multimedia_params(),
                                   output=None)
        with self.assertRaises(TypeError):
            image_coordinates(np.empty((10, 3)),
                              self.calibration,
                              self.control.get_multimedia_params(),
                              output=np.zeros((10, 3)))
        with self.assertRaises(TypeError):
            image_coordinates(np.zeros((10, 2)),
                              self.calibration,
                              self.control.get_multimedia_params(),
                              output=np.zeros((10, 2)))

    def test_image_coord_regress(self):

        self.calibration.set_pos(np.array([0, 0, 40]))
        self.calibration.set_angles(np.array([0, 0, 0]))
        self.calibration.set_primary_point(np.array([0, 0, 10]))
        self.calibration.set_glass_vec(np.array([0, 0, 20]))
        self.calibration.set_radial_distortion(np.array([0, 0, 0]))
        self.calibration.set_decentering(np.array([0, 0]))
        self.calibration.set_affine_trans(np.array([1, 0]))

        self.mult = MultimediaParams(n1=1,
                                     n2=np.array([1]),
                                     n3=1,
                                     d=np.array([1]))

        input = np.array([[10., 5., -20.], [10., 5., -20.]])  # vec3d
        output = np.zeros((2, 2))

        x = 10. / 6.
        y = x / 2.
        correct_output = np.array([[x, y], [x, y]])

        flat_image_coordinates(input=input,
                               cal=self.calibration,
                               mult_params=self.mult,
                               output=output)
        np.testing.assert_array_equal(output, correct_output)

        output = np.full((2, 2), 999.)
        image_coordinates(input=input,
                          cal=self.calibration,
                          mult_params=self.mult,
                          output=output)

        np.testing.assert_array_equal(output, correct_output)
Example #20
0
part_traject = np.zeros((num_frames,3))
part_traject[:,0] = np.r_[:num_frames]*velocity

# Find targets on each camera.
cpar = ControlParams(3)
cpar.read_control_par("testing_fodder/track/parameters/control_newpart.par")

targs = []
for cam in xrange(num_cams):
    cal = Calibration()
    cal.from_file(
        "testing_fodder/cal/sym_cam%d.tif.ori" % (cam + 1), 
        "testing_fodder/cal/cam1.tif.addpar")
    targs.append(convert_arr_metric_to_pixel(image_coordinates(
        part_traject, cal, cpar.get_multimedia_params()), cpar))

for frame in xrange(num_frames):
    # write 3D positions:
    with open("testing_fodder/track/res_orig/particles.%d" % (frame + 1), "w") as outfile:
        # Note correspondence to the single target in each frame.
        outfile.writelines([
            str(1) + "\n", 
            "{:5d}{:10.3f}{:10.3f}{:10.3f}{:5d}{:5d}{:5d}{:5d}\n".format(
                1, part_traject[frame,0], part_traject[frame,1], 
                part_traject[frame,1], 0, 0, 0, 0)]) 
    
    # write associated targets from all cameras:
    for cam in xrange(num_cams):
        with open("testing_fodder/track/newpart/cam%d.%04d_targets" \
                % (cam + 1, frame + 1), "w") as outfile: