def test_abc_run(): def square(x): return np.sum(x**2) def hook(optimizer, space, function): return new_function = function.Function(pointer=square) hyperparams = {'n_trials': 1} new_abc = abc.ABC(hyperparams=hyperparams) search_space = search.SearchSpace(n_agents=10, n_iterations=100, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) history = new_abc.run(search_space, new_function, pre_evaluation_hook=hook) assert len(history.agents) > 0 assert len(history.best_agent) > 0 best_fitness = history.best_agent[-1][1] assert best_fitness <= constants.TEST_EPSILON, 'The algorithm abc failed to converge.'
def test_abc_hyperparams_setter(): new_abc = abc.ABC() try: new_abc.n_trials = 0.0 except: new_abc.n_trials = 10 try: new_abc.n_trials = 0 except: new_abc.n_trials = 10 assert new_abc.n_trials == 10
def test_abc_run(): def square(x): return np.sum(x**2) new_function = function.Function(pointer=square) hyperparams = {'n_trials': 10} new_abc = abc.ABC(hyperparams=hyperparams) search_space = search.SearchSpace(n_agents=2, n_iterations=100, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) history = new_abc.run(search_space, new_function) assert len(history.agents) > 0 assert len(history.best_agent) > 0
def test_abc_build(): new_abc = abc.ABC() assert new_abc.built == True
def test_abc_hyperparams_setter(): new_abc = abc.ABC() new_abc.n_trials = 10 assert new_abc.n_trials == 10
def test_abc_hyperparams(): hyperparams = {'n_trials': 5} new_abc = abc.ABC(hyperparams=hyperparams) assert new_abc.n_trials == 5