Example #1
0
    def makeLearner(self):
        # for icmi
        #from orangeUtils import ThresholdProbabilityLearner
        #import orngBayes
        #learner = orngBayes.BayesLearner()
        #learner.adjustThreshold = True
        #return learner

        #return orngEnsemble.RandomForestLearner(data)
        #return orngTree.TreeLearner(data)
        #return treefss.TreeFSS(N=7)(data)
        treeLearner = orngTree.TreeLearner(storeExamples=True)
        treeLearner.stop = orange.TreeStopCriteria_common()
        #treeLearner.stop.minExamples = 1
        treeLearner.maxDepth = 5
        #treeLearner.stop.maxMajority = 0.8
        #return treeLearner
        return preposition.RejectInsaneExampleLearner(treeLearner)
Example #2
0
    def learnModel(self, X, y):
        if numpy.unique(y).shape[0] != 2:
            raise ValueError("Can only operate on binary data")

        classes = numpy.unique(y)
        self.worstResponse = classes[classes != self.bestResponse][0]

        #We need to convert y into indices
        newY = self.labelsToInds(y)

        XY = numpy.c_[X, newY]
        attrList = []
        for i in range(X.shape[1]):
            attrList.append(orange.FloatVariable("X" + str(i)))

        attrList.append(orange.EnumVariable("y"))
        attrList[-1].addValue(str(self.bestResponse))
        attrList[-1].addValue(str(self.worstResponse))

        self.domain = orange.Domain(attrList)
        eTable = orange.ExampleTable(self.domain, XY)

        #Weight examples and equalise
        #Equalizing computes such weights that the weighted number of examples
        #in each class is equivalent.
        preprocessor = orange.Preprocessor_addClassWeight(equalize=1)
        preprocessor.classWeights = [1 - self.weight, self.weight]
        eTable, weightID = preprocessor(eTable)
        eTable.domain.addmeta(weightID, orange.FloatVariable("w"))

        self.learner = orngTree.TreeLearner(m_pruning=self.m,
                                            measure="gainRatio")
        self.learner.max_depth = self.maxDepth
        self.learner.stop = orange.TreeStopCriteria_common()
        self.learner.stop.min_instances = self.minSplit
        self.classifier = self.learner(eTable, weightID)
Example #3
0
    def instance(self):
        learner = orange.TreeLearner()

        hasSplit = hasattr(self, "split")
        if hasSplit:
            learner.split = self.split
        else:
            learner.split = orange.TreeSplitConstructor_Combined()
            learner.split.continuousSplitConstructor = orange.TreeSplitConstructor_Threshold(
            )
            binarization = getattr(self, "binarization", 0)
            if binarization == 1:
                learner.split.discreteSplitConstructor = orange.TreeSplitConstructor_ExhaustiveBinary(
                )
            elif binarization == 2:
                learner.split.discreteSplitConstructor = orange.TreeSplitConstructor_OneAgainstOthers(
                )
            else:
                learner.split.discreteSplitConstructor = orange.TreeSplitConstructor_Attribute(
                )

            measures = {
                "infoGain": orange.MeasureAttribute_info,
                "gainRatio": orange.MeasureAttribute_gainRatio,
                "gini": orange.MeasureAttribute_gini,
                "relief": orange.MeasureAttribute_relief,
                "retis": orange.MeasureAttribute_MSE
            }

            measure = getattr(self, "measure", None)
            if type(measure) == str:
                measure = measures[measure]()
            if not hasSplit and not measure:
                measure = orange.MeasureAttribute_gainRatio()

            measureIsRelief = type(measure) == orange.MeasureAttribute_relief
            relM = getattr(self, "reliefM", None)
            if relM and measureIsRelief:
                measure.m = relM

            relK = getattr(self, "reliefK", None)
            if relK and measureIsRelief:
                measure.k = relK

            learner.split.continuousSplitConstructor.measure = measure
            learner.split.discreteSplitConstructor.measure = measure

            wa = getattr(self, "worstAcceptable", 0)
            if wa:
                learner.split.continuousSplitConstructor.worstAcceptable = wa
                learner.split.discreteSplitConstructor.worstAcceptable = wa

            ms = getattr(self, "minSubset", 0)
            if ms:
                learner.split.continuousSplitConstructor.minSubset = ms
                learner.split.discreteSplitConstructor.minSubset = ms

        if hasattr(self, "stop"):
            learner.stop = self.stop
        else:
            learner.stop = orange.TreeStopCriteria_common()
            mm = getattr(self, "maxMajority", 1.0)
            if mm < 1.0:
                learner.stop.maxMajority = self.maxMajority
            me = getattr(self, "minExamples", 0)
            if me:
                learner.stop.minExamples = self.minExamples

        for a in [
                "storeDistributions", "storeContingencies", "storeExamples",
                "storeNodeClassifier", "nodeLearner", "maxDepth"
        ]:
            if hasattr(self, a):
                setattr(learner, a, getattr(self, a))

        return learner
Example #4
0
 def makeLearner(self):
     #return orngEnsemble.RandomForestLearner()
     treeLearner = orngTree.TreeLearner(storeExamples=True)
     treeLearner.stop = orange.TreeStopCriteria_common() 
     treeLearner.maxDepth=4
     return preposition.RejectInsaneExampleLearner(treeLearner)
        nodeCont = node.distribution
        majorClass = node.nodeClassifier.defaultValue
        print "--> %s (%s) " % (majorClass, nodeCont),


def printTree(x):
    if type(x) == orange.TreeClassifier:
        printTree0(x.tree, 0)
    elif type(x) == orange.TreeNode:
        printTree0(x, 0)
    else:
        raise TypeError, "invalid parameter"


print learner.split
learner(data)
print learner.split

learner.stop = orange.TreeStopCriteria_common()
print learner.stop.maxMajority, learner.stop.minExamples

print "\n\nTree with minExamples = 5.0"
learner.stop.minExamples = 5.0
tree = learner(data)
printTree(tree)

print "\n\nTree with maxMajority = 0.5"
learner.stop.maxMajority = 0.5
tree = learner(data)
printTree(tree)
Example #6
0
 def makeLearner(self):
     treeLearner = orngTree.TreeLearner(storeExamples=True)
     treeLearner.stop = orange.TreeStopCriteria_common()
     treeLearner.maxDepth = 5
     return preposition.RejectInsaneExampleLearner(treeLearner)