def getAxisFieldFunction(fl_name): """ This function will read the .FSO file and extract the axis field Ez(z). """ fl_in = open(fl_name, "r") lns = fl_in.readlines() fl_in.close() func = Function() i_start = -1 for i in range(len(lns)): if (lns[i].find(" Z(cm) Ez(V/m)") >= 0): i_start = i + 1 break for i in range(i_start, len(lns)): res_arr = lns[i].split() if (len(res_arr) != 2): break x = 0.01 * float(res_arr[0]) y = float(res_arr[1]) func.add(x, y) #fix for the field at the 0 region func1 = Function() for i in range(1, func.getSize()): ind = func.getSize() - i x = -func.x(ind) y = func.y(ind) func1.add(x, y) for i in range(func.getSize()): x = func.x(i) y = func.y(i) func1.add(x, y) return func1
def getAxisEz(self, zSimmetric = -1): """ Returns the Spline with Ez(z) on the axis of the RF. If zSimmetric > 0 the table has only half of the table, and the Function should be added points for (-Zmax) to (Zmin - step). """ stepZ = (self.Zmax - self.Zmin)/self.zSteps Ez_max = 0. for iz in range(self.zSteps+1): [z,r,Ez,Er,E,B] = self.data_arr[iz] Ez_abs = math.fabs(Ez) if(Ez_max < Ez_abs): Ez_max = Ez_abs #The z in the self.data_arr is in [cm], so to switch to [m] we use 0.01 f = Function() if(zSimmetric > 0): for iz in range(1,self.zSteps+1): [z,r,Ez,Er,E,B] = self.data_arr[iz] z = self.Zmin + stepZ*iz f.add(-z*0.01,Ez/Ez_max) for iz in range(self.zSteps+1): [z,r,Ez,Er,E,B] = self.data_arr[iz] z = self.Zmin + stepZ*iz f.add(z*0.01,Ez/Ez_max) spline = SplineCH() spline.compile(f) return spline
def getNormilizedSpline(self): """ Returns the spline normilized by the integral of the absolute value. """ n = self.splineFiled.getSize() f = Function() for i in range(n): f.add(self.splineFiled.x(i),math.fabs(self.splineFiled.y(i))) integral = GaussLegendreIntegrator(500) integral.setLimits(self.splineFiled.x(0),self.splineFiled.x(n-1)) spline = SplineCH() spline.compile(f) res = integral.integral(spline) f = Function() for i in range(n): f.add(self.splineFiled.x(i),self.splineFiled.y(i)/res) spline = SplineCH() spline.compile(f) return spline
def __init__(self, length_param, rad_in, rad_out, cutoff_level = 0.01): self.length = length_param self.rad_in = rad_in self.rad_out = rad_out self.cutoff_level = cutoff_level self.normalization = 1.0 self.n_func_points = 500 z_step = length_param/self.n_func_points z_cutoff = self._findCutOff(z_step,cutoff_level) self.z_min = - z_cutoff self.z_max = + z_cutoff self.func = Function() self._normalize()
def __init__(self, length_param, acceptance_diameter_param, cutoff_level = 0.01): self.length = length_param self.acceptance_diameter = acceptance_diameter_param self.a_arr = [0.296471,4.533219,-2.270982,1.068627,-0.036391,0.022261] self.normalization= 1.0 self.n_func_points = 500 #-----find cut-off z value self.cutoff_z = self.acceptance_diameter step = self.acceptance_diameter self.cutoff_level = cutoff_level self.cutoff_z = self._findCutOff(step, cutoff_level) #------------------------------------------------------ self.func = Function() self._normalize()
def RenormalizeFunction(func, z_min, z_max): """ It re-normalizes the Function in the new limits (z_min,z_max). We assume that region of the function definition will be cut not extended. """ spline = SplineCH() spline.compile(func) integrator = GaussLegendreIntegrator(500) integrator.setLimits(z_min, z_max) integral = integrator.integral(spline) n_points = func.getSize() step = (z_max - z_min) / (n_points - 1) new_func = Function() for i in range(n_points): x = z_min + step * i y = spline.getY(x) / integral new_func.add(x, y) new_func.setConstStep(1) return new_func
def addAxisField(cls,fl_name,dir_location = ""): """ This method add to the store the axis RF field for the RF gap node. The dir_location string variable will be added to the fl_name to get the file name. Returns the axis RF field function. """ if(cls.static_axis_field_dict.has_key(fl_name)): return cls.static_axis_field_dict[fl_name] comm = orbit_mpi.mpi_comm.MPI_COMM_WORLD data_type = mpi_datatype.MPI_DOUBLE rank = orbit_mpi.MPI_Comm_rank(comm) main_rank = 0 x_arr = [] y_arr = [] if(rank == 0): fl_in = open(dir_location + fl_name,"r") lns = fl_in.readlines() fl_in.close() for ln in lns: res_arr = ln.split() if(len(res_arr) == 2): x = float(res_arr[0]) y = float(res_arr[1]) x_arr.append(x) y_arr.append(y) x_arr = orbit_mpi.MPI_Bcast(x_arr,data_type,main_rank,comm) y_arr = orbit_mpi.MPI_Bcast(y_arr,data_type,main_rank,comm) function = Function() for ind in range(len(x_arr)): function.add(x_arr[ind],y_arr[ind]) #---- setting the const step (if function will allow it) #---- will speed up function calculation later function.setConstStep(1) cls.static_axis_field_dict[fl_name] = function return function
#------------------------------------------------------ # This is an example of Function and SplineCH # They are containers for (x,y) (or (x,y,err) ) points # Function provides a linear interpolation, and SplineCH # uses 3-rd order polynomials. SplineCH can be used for # derivatives calculations. #------------------------------------------------------- import sys import math from orbit_utils import Function from orbit_utils import SplineCH f = Function() def FF(x): return math.sin(x) def FFP(x): return math.cos(x) n = 40 step = 2*math.pi/n for i in range(n): x = step*i+0.1*((1.0*i)/n)**2; y = FF(x) f.add(x,y) f.dump()
(x, xp, y, yp, z, dE) = (0.05, 0.0, 0.05, 0.0, 0., 0.001) bunch_ini.addParticle(x, xp, y, yp, z, dE) bunch_tmp = Bunch() bunch_ini.copyBunchTo(bunch_tmp) start_ind = accLattice.getNodeIndex(quads[0]) stop_ind = accLattice.getNodeIndex(quads[len(quads) - 1]) accLattice.trackDesignBunch(bunch_tmp, None, None, index_start=start_ind, index_stop=stop_ind) traj_x_function = Function() traj_xp_function = Function() #----- if you want more beam size points along the trajectory - change pos_step here paramsDict = {"old_pos": -1., "count": 0, "pos_step": 0.1, "path_length": 0.} actionContainer = AccActionsContainer("TEAPOT Bunch Tracking") #----- start of the 1st quad pos_start = -quads[0].getLength() / 2 def action_account(paramsDict): node = paramsDict["node"] name = node.getName() bunchI = paramsDict["bunch"] pos = paramsDict["path_length"]
def __init__(self,splineFiled, zeroIsCenter = False): self.splineFiled = splineFiled #---------------------------------------------------- self.eps_root = 1.0e-6 self.rf_freq = 0.0 #self.e0_normalized_arr - normilized amplitudes of the gaps self.e0_normalized_arr = [] self.e0l_normalized_arr = [] # self.beta_arr - relativistic beta, cappa = 2*math.pi*rf_freq/(c_light*beta) self.beta_arr = [] self.cappa_arr = [] # self.ttp_ssp_gap_arr array with [T,Tp,S,Sp] for all gaps (T,Tp,S,Sp - Functions of cappa) self.ttp_ssp_gap_arr = [] # self.gap_polynoms_coef_arr array with polynomial coefficients for [T,Tp,S,Sp] for each gap self.gap_polynoms_coef_arr = [] # self.gap_polynoms_arr array with Polynomial instances for [T,Tp,S,Sp] for each gap self.gap_polynoms_arr = [] # self.gap_polynoms_t_tp_s_sp_err_arr - maximal relative errors for polynomial fitting self.gap_polynoms_t_tp_s_sp_err_arr = [] #----------------------------------------------------- #calculate the roots self.roots_arr = self.rootAnalysis() #find the roots of derivative - yp = y' - RFgap center positions if(zeroIsCenter): self.yp_roots_arr = [0.] else: self.yp_roots_arr = self.gapCentersAnalysis() #print "debug yp roots=",self.yp_roots_arr if(len(self.roots_arr) - 1 != len(self.yp_roots_arr)): rank = orbit_mpi.MPI_Comm_rank(mpi_comm.MPI_COMM_WORLD) if(rank == 0): print "Class RF_AxisFieldAnalysis." print "The structure of the input rf field spline is wrong!" print "roots of the filed =",self.roots_arr print "extrema positions =",self.yp_roots_arr sys.exit(1) # caluclate the position of the center of the cavity rf_center = 0 for i in range(1,len(self.yp_roots_arr)-1): rf_center += self.yp_roots_arr[i] rf_center /= (len(self.yp_roots_arr)-2) self.rf_center = rf_center # make spline for each RF gap self.gap_slpline_arr = [] #print "debug roots_arr=",self.roots_arr #---make splineGap with x in the [m] instead of [cm] for i in range(len(self.roots_arr)-1): x_center = self.yp_roots_arr[i] x0 = self.roots_arr[i] x1 = self.roots_arr[i+1] f = Function() f.add((x0-x_center),math.fabs(splineFiled.getY(x0))) for ix in range(splineFiled.getSize()-1): x = splineFiled.x(ix) if(x > x0 and x < x1): f.add((x-x_center),math.fabs(splineFiled.y(ix))) f.add((x1-x_center),math.fabs(splineFiled.getY(x1))) splineGap = SplineCH() splineGap.compile(f) n = splineGap.getSize() x_min = splineGap.x(0) x_max = splineGap.x(n-1) gap_length = x_max - x_min self.gap_slpline_arr.append([gap_length,(x_center - self.rf_center),splineGap])
def makeTransitTimeTables(self,beta_min,beta_max,n_table_points,rf_freq): """ It will calculate transit time factor tables for all RF gaps TTFs (T,S,Tp,Sp) are funcftions of the cappa variable = 2*pi*f/(c*beta) """ self.rf_freq = rf_freq c_light = 2.99792458e+8 self.beta_arr = [] self.cappa_arr = [] for i_beta in range(n_table_points): beta = beta_min + i_beta*(beta_max-beta_min)/(n_table_points-1) cappa = 2*math.pi*rf_freq/(c_light*beta) self.beta_arr.append(beta) self.cappa_arr.append(cappa) self.beta_arr.reverse() self.cappa_arr.reverse() #--calculate realtive gap amplitudes integral = GaussLegendreIntegrator(500) e0l_arr = [] e0l_sum = 0. for i in range(len(self.gap_slpline_arr)): [gap_length,x_center,splineGap] = self.gap_slpline_arr[i] n = splineGap.getSize() x_min = splineGap.x(0) x_max = splineGap.x(n-1) integral.setLimits(x_min,x_max) e0l = integral.integral(splineGap) e0l_sum += e0l e0l_arr.append(e0l) self.e0_normalized_arr = [] self.e0l_normalized_arr = [] e0_norm = e0l_arr[0]/self.gap_slpline_arr[0][0] e0l_norm = e0l_arr[0] for i in range(len(e0l_arr)): self.e0_normalized_arr.append((e0l_arr[i]/self.gap_slpline_arr[i][0])/e0_norm) self.e0l_normalized_arr.append((e0l_arr[i]/e0l_norm)) #--- calculate transit time factors self.ttp_ssp_gap_arr = [] for i in range(len(self.gap_slpline_arr)): func_T = Function() func_TP = Function() func_S = Function() func_SP = Function() self.ttp_ssp_gap_arr.append([func_T,func_TP,func_S,func_SP]) for i_gap in range(len(self.gap_slpline_arr)): [func_T,func_TP,func_S,func_SP] = self.ttp_ssp_gap_arr[i_gap] [gap_length,x0,spline] = self.gap_slpline_arr[i_gap] x_min = spline.x(0) x_max = spline.x(spline.getSize()-1) integral.setLimits(x_min,x_max) for i_beta in range(n_table_points): beta = self.beta_arr[i_beta] cappa = self.cappa_arr[i_beta] f_cos = Function() f_sin = Function() for isp in range(spline.getSize()): x = spline.x(isp) y = spline.y(isp) phase = cappa*x s = math.sin(phase) c = math.cos(phase) f_cos.add(x,c*y) f_sin.add(x,s*y) f_sp_cos = SplineCH() f_sp_sin = SplineCH() f_sp_cos.compile(f_cos) f_sp_sin.compile(f_sin) T = integral.integral(f_sp_cos) S = integral.integral(f_sp_sin) func_T.add(cappa,T/e0l_arr[i_gap]) func_S.add(cappa,S/e0l_arr[i_gap]) spline_T = SplineCH() spline_S = SplineCH() spline_T.compile(func_T) spline_S.compile(func_S) for i_beta in range(spline_T.getSize()): cappa = spline_T.x(i_beta) TP = spline_T.getYP(cappa) SP = spline_S.getYP(cappa) func_TP.add(cappa,TP) func_SP.add(cappa,SP) return self.ttp_ssp_gap_arr
#---- Print vector function def printV(v): print "----vector--- size=",v.size() for i in xrange(v.size()): print ("v(" + str(i) + ")="+str(v.get(i)) + " "), print "" #---- Let's read the dB/dr distribution. It could be equals to zero, #---- and in this case we will treat this as drift file_name = "MEBT_fields_rf_and_quads.dat" fl_in = open(file_name,"r") lns = fl_in.readlines() fl_in.close() #---- first line in the input files is a headers line g_func = Function() for ind in range(1,len(lns)): ln = lns[ind].strip() res_arr = ln.split() if(len(res_arr) > 5): #---- here we parse the input file: 1st position - z, 4th - dB/dr(z z = float(res_arr[0]) g = float(res_arr[3]) g_func.add(z,g) #---- let's set energy and momentum mass = 0.938272 + 2*0.000511 eKin = 0.0025 momentum = math.sqrt(eKin*(eKin + 2*mass)) Brho = 3.33564*momentum # [T*m] charge = -1.0