def use_orcanet(): temp_folder = "output/" os.mkdir(temp_folder) make_dummy_data(temp_folder) list_file = "example_list.toml" organizer = Organizer(temp_folder + "sum_model", list_file) organizer.cfg.train_logger_display = 10 model = make_dummy_model() organizer.train_and_validate(model, epochs=3) organizer.predict()
def predict(directory, list_file=None, config_file=None, epoch=None, fileno=None): from orcanet.core import Organizer orga = Organizer(directory, list_file, config_file, tf_log_level=1) return orga.predict(epoch=epoch, fileno=fileno)[0]
def orca_pred(output_folder, list_file, config_file, model_file, epoch=None, fileno=None): """ Run orga.predict with predefined ModelBuilder networks using a parser. Per default, the most recent saved model will be loaded. Parameters ---------- output_folder : str Path to the folder where everything gets saved to, e.g. the summary log file, the plots, the trained models, etc. list_file : str Path to a list file which contains pathes to all the h5 files that should be used for training and validation. config_file : str Path to a .toml file which overwrites some of the default settings for training and validating a model. model_file : str Path to a file with parameters to build a model of a predefined architecture with OrcaNet. epoch : int, optional The epoch of the saved model to predict with. fileno : int, optional The filenumber of the saved model to predict with. """ # Set up the Organizer with the input data orga = Organizer(output_folder, list_file, config_file, tf_log_level=1) # When predicting with a orga model, the right modifiers and custom # objects need to be given update_objects(orga, model_file) # Per default, a prediction will be done for the model with the # highest epoch and filenumber. orga.predict(epoch=epoch, fileno=fileno)