def _variable_with_weight_decay(name, shape, stddev, wd):
    """Helper to create an initialized Variable with weight decay.
    """
    dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
    var = _variable_on_cpu(
        name, shape, tf.truncated_normal_initializer(stddev=stddev,
                                                     dtype=dtype))
    if wd is not None:
        weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
        tf.add_to_collection('losses', weight_decay)
    return var
def _variable_with_weight_decay(name, shape, stddev, wd):
    """Helper to create an initialized Variable with weight decay.
    """
    dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
    var = _variable_on_cpu(
            name,
            shape,
            tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
    if wd is not None:
        weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
        tf.add_to_collection('losses', weight_decay)
    return var
def score(logits, labels):
    """Add L2Loss to all the trainable variables.
    """
    # Calculate the average cross entropy loss across the batch.
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits, labels, name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')
def score(logits, labels):
    """Add L2Loss to all the trainable variables.
    """
    # Calculate the average cross entropy loss across the batch.
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits, labels, name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')