Example #1
0
    def __init__(
        self,
        space,
        seed=None,
        n_initial_points=20,
        n_ei_candidates=24,
        gamma=0.25,
        equal_weight=False,
        prior_weight=1.0,
        full_weight_num=25,
        max_retry=100,
        parallel_strategy=None,
    ):

        if n_initial_points < 2:
            n_initial_points = 2
            logger.warning(
                "n_initial_points %s is not valid, set n_initial_points = 2",
                str(n_initial_points),
            )

        if n_ei_candidates < 1:
            n_ei_candidates = 1
            logger.warning(
                "n_ei_candidates %s is not valid, set n_ei_candidates = 1",
                str(n_ei_candidates),
            )

        if parallel_strategy is None:
            parallel_strategy = {
                "of_type": "StatusBasedParallelStrategy",
                "strategy_configs": {
                    "broken": {
                        "of_type": "MaxParallelStrategy",
                    },
                },
            }

        self.strategy = strategy_factory.create(**parallel_strategy)

        super(TPE, self).__init__(
            space,
            seed=seed,
            n_initial_points=n_initial_points,
            n_ei_candidates=n_ei_candidates,
            gamma=gamma,
            equal_weight=equal_weight,
            prior_weight=prior_weight,
            full_weight_num=full_weight_num,
            max_retry=max_retry,
            parallel_strategy=parallel_strategy,
        )
Example #2
0
    def create_strategy(self, config=None, **kwargs):
        """Create the parallel strategy based on config.

        Parameters
        ----------
        config: dict, optional
            The configuration for the parallel strategy. ``self.config`` will be used
            if ``config`` is ``None``.
        kwargs: dict
            Values to override strategy configuration.
        """
        config = copy.deepcopy(config or self.config)
        config.update(kwargs)
        return strategy_factory.create(**self.config)
Example #3
0
    def __init__(
        self,
        space,
        seed=None,
        min_points_in_model=None,
        top_n_percent=15,
        num_samples=64,
        random_fraction=1 / 3,
        bandwidth_factor=3,
        min_bandwidth=1e-3,
        parallel_strategy=None,
    ):  # pylint: disable=too-many-arguments

        if parallel_strategy is None:
            parallel_strategy = {
                "of_type": "StatusBasedParallelStrategy",
                "strategy_configs": {
                    "broken": {
                        "of_type": "MaxParallelStrategy",
                    },
                },
            }

        self.strategy = strategy_factory.create(**parallel_strategy)

        super().__init__(
            space,
            seed=seed,
            min_points_in_model=min_points_in_model,
            top_n_percent=top_n_percent,
            num_samples=num_samples,
            random_fraction=random_fraction,
            bandwidth_factor=bandwidth_factor,
            min_bandwidth=min_bandwidth,
            parallel_strategy=parallel_strategy,
        )
        self.trial_meta = {}
        self.trial_results = {}
        self.iteration = 0
        self.iterations = []

        fidelity_index = self.fidelity_index
        if fidelity_index is None:
            raise RuntimeError(SPACE_ERROR)
        fidelity_dim = self.space[fidelity_index]

        fidelity_dim: Fidelity = space[self.fidelity_index]

        # NOTE: This isn't a Fidelity, it's a TransformedDimension<Fidelity>
        from orion.core.worker.transformer import TransformedDimension

        # NOTE: Currently bypassing (possibly more than one) `TransformedDimension` wrappers to get
        # the 'low', 'high' and 'base' attributes.
        while isinstance(fidelity_dim, TransformedDimension):
            fidelity_dim = fidelity_dim.original_dimension
        assert isinstance(fidelity_dim, Fidelity)

        self.min_budget = fidelity_dim.low
        self.max_budget = fidelity_dim.high
        self.eta = fidelity_dim.base

        self._setup()
Example #4
0
    def __init__(
        self,
        space: Space,
        seed: int | Sequence[int] | None = None,
        n_initial_points: int = 20,
        n_ei_candidates: int = 24,
        gamma: float = 0.25,
        equal_weight: bool = False,
        prior_weight: float = 1.0,
        full_weight_num: int = 25,
        max_retry: int = 100,
        parallel_strategy: dict | None = None,
    ):

        if n_initial_points < 2:
            n_initial_points = 2
            logger.warning(
                "n_initial_points %s is not valid, set n_initial_points = 2",
                str(n_initial_points),
            )

        if n_ei_candidates < 1:
            n_ei_candidates = 1
            logger.warning(
                "n_ei_candidates %s is not valid, set n_ei_candidates = 1",
                str(n_ei_candidates),
            )

        if parallel_strategy is None:
            parallel_strategy = {
                "of_type": "StatusBasedParallelStrategy",
                "strategy_configs": {
                    "broken": {
                        "of_type": "MaxParallelStrategy",
                    },
                },
            }

        self.strategy: ParallelStrategy = strategy_factory.create(**parallel_strategy)

        super().__init__(
            space,
            seed=seed,
            n_initial_points=n_initial_points,
            n_ei_candidates=n_ei_candidates,
            gamma=gamma,
            equal_weight=equal_weight,
            prior_weight=prior_weight,
            full_weight_num=full_weight_num,
            max_retry=max_retry,
            parallel_strategy=parallel_strategy,
        )
        # TODO: Setting the attributes here so their types are registered. Need to get rid of
        # overlap with super().__init__ somehow.
        self.seed = seed
        self.n_initial_points = n_initial_points
        self.n_ei_candidates = n_ei_candidates
        self.gamma = gamma
        self.equal_weight = equal_weight
        self.prior_weight = prior_weight
        self.full_weight_num = full_weight_num
        self.max_retry = max_retry
        self.parallel_strategy = parallel_strategy
        self._verify_space()