Example #1
0
    def Forecast_Cellrsx(self, ellBinEdges, fsky, option='None'):

        ellMids = old_div((ellBinEdges[1:] + ellBinEdges[:-1]), 2)

        cls_rsx = self.fgs.rs_cross(self.evalells,self.freq[0]) / self.cc.c['TCMBmuK']**2. \
                / ((self.evalells+1.)*self.evalells) * 2.* np.pi

        cls_rsx = old_div(cls_rsx, (self.fgs.rs_nu(
            self.freq[0])))  # Normalized to get Cell^rsrs fiducial

        LF = LensForecast()
        if (option == 'None'):
            LF.loadGenericCls("rr", self.evalells, cls_rsx, self.evalells,
                              self.N_ll_rsx)
        elif (option == 'NoILC'):
            LF.loadGenericCls("rr", self.evalells, cls_rsx, self.evalells,
                              self.N_ll_noILC)
        else:
            return "Wrong option"

        sn, errs = LF.sn(ellBinEdges, fsky, "rr")  # not squared

        cls_out = np.interp(ellMids, self.evalells, cls_rsx)

        return ellMids, cls_out, errs, sn
Example #2
0
File: ilc.py Project: JerreYjz/szar
    def Forecast_CellrsxEE(self, ellBinEdges, fsky, option='None'):

        ellMids = old_div((ellBinEdges[1:] + ellBinEdges[:-1]), 2)

        cls_rsxEE = self.fgs.rs_crossEE(
            self.evalells, self.fgs.nu_rs) / self.cc.c['TCMBmuK']**2. / (
                (self.evalells + 1.) * self.evalells) * 2. * np.pi
        LF = LensForecast()
        if (option == 'None'):
            LF.loadGenericCls("ee", self.evalells, cls_rsxEE, self.evalells,
                              self.N_ll_rsxEE)
        elif (option == 'NoILC'):
            LF.loadGenericCls("ee", self.evalells, cls_rsxEE, self.evalells,
                              self.N_ll_rsx_NoFG)
        elif (option == 'Onlyfg'):
            LF.loadGenericCls("ee", self.evalells, cls_rsxEE, self.evalells,
                              self.N_ll_rsxEE - self.N_ll_rsx_NoFG)
        else:
            return "Wrong option"

        sn, errs = LF.sn(ellBinEdges, fsky, "ee")  # not squared

        cls_out = np.interp(ellMids, self.evalells, cls_rsxEE)

        return ellMids, cls_out, errs, sn
Example #3
0
    def Forecast_Cellyy(self, ellBinEdges, fsky, constraint='None'):

        ellMids = old_div((ellBinEdges[1:] + ellBinEdges[:-1]), 2)

        cls_tsz = self.fgs.tSZ(self.evalells,self.freq[0],self.freq[0]) / self.cc.c['TCMBmuK']**2. \
                / ((self.evalells+1.)*self.evalells) * 2.* np.pi

        cls_yy = old_div(cls_tsz,
                         (f_nu(self.cc.c,
                               self.freq[0]))**2)  # Normalized to get Cell^yy

        LF = LensForecast()
        if (constraint == 'None'):
            LF.loadGenericCls("yy", self.evalells, cls_yy, self.evalells,
                              self.N_ll_tsz)
        elif (constraint == 'cmb'):
            LF.loadGenericCls("yy", self.evalells, cls_yy, self.evalells,
                              self.N_ll_tsz_c_cmb)
        elif (constraint == 'cib'):
            LF.loadGenericCls("yy", self.evalells, cls_yy, self.evalells,
                              self.N_ll_tsz_c_cib)
        else:
            return "Wrong option"

        sn, errs = LF.sn(ellBinEdges, fsky, "yy")  # not squared

        cls_out = np.interp(ellMids, self.evalells, cls_yy)

        return ellMids, cls_out, errs, sn
Example #4
0
    def Forecast_Cellcmb(self,ellBinEdges,fsky,constraint='None'):

        ellMids  =  old_div((ellBinEdges[1:] + ellBinEdges[:-1]), 2)

        cls_cmb = self.cc.clttfunc(self.evalells)

        LF = LensForecast()
        if (constraint=='None'):
            LF.loadGenericCls("tt",self.evalells,cls_cmb,self.evalells,self.N_ll_cmb)
        elif (constraint=='tsz'):
            LF.loadGenericCls("tt",self.evalells,cls_cmb,self.evalells,self.N_ll_cmb_c_tsz)
        else:
            return "Wrong option"

        sn,errs = LF.sn(ellBinEdges,fsky,"tt") # not squared

        cls_out = np.interp(ellMids,self.evalells,cls_cmb)

        return ellMids,cls_out,errs,sn
Example #5
0
    # get index of mnu and print marginalized constraint
    indMnu = paramList.index('mnu')
    mnu = np.sqrt(np.linalg.inv(Fisher)[indMnu,indMnu])*1000.
    cprint("Sum of neutrino masses 1-sigma: "+ str(mnu) + " meV",color="green",bold=True)

    mnus.append(mnu)
    # CLKK S/N ============================================

    # Calculate Clkk S/N
    Clkk = fidCls[:,4]
    frange = np.array(range(len(Clkk)))
    snrange = np.arange(kellmin,kellmax)
    LF = LensForecast()
    LF.loadKK(frange,Clkk,ls,Nls)
    sn,errs = LF.sn(snrange,fsky,"kk")
    cprint("Lensing autopower S/N: "+ str(sn),color="green",bold=True)

    # pl = Plotter(scaleY='log',xscale='log')
    # pl.add(frange,Clkk)
    # pl.add(ls,Nls)
    # pl._ax.set_ylim(-max(Clkk),max(Clkk))
    # pl.done("clkk.png")



    sns.append(sn)
    
    # r Forecast ============================================

    spellmin,spellmax = list_from_config(Config,'rForecast','pellrange')