Example #1
0
def counts_from_config(Config,bigDataDir,version,expName,gridName,mexp_edges,z_edges,lkneeTOverride=None,alphaTOverride=None):
    suffix = ""
    if lkneeTOverride is not None:
        suffix += "_"+str(lkneeTOverride)
    if alphaTOverride is not None:
        suffix += "_"+str(alphaTOverride)
    mgrid,zgrid,siggrid = pickle.load(open(bigDataDir+"szgrid_"+expName+"_"+gridName+ "_v" + version+suffix+".pkl",'rb'))
    #mgrid,zgrid,siggrid = pickle.load(open(bigDataDir+"szgrid_"+expName+"_"+gridName+ "_v" + version+suffix+".pkl",'rb'),encoding='latin1')
    experimentName = expName
    cosmoDict = dict_from_section(Config,"params")
    constDict = dict_from_section(Config,'constants')
    clusterDict = dict_from_section(Config,'cluster_params')
    clttfile = Config.get("general","clttfile")
    cc = ClusterCosmology(cosmoDict,constDict,clTTFixFile = clttfile)

    beam = list_from_config(Config,experimentName,'beams')
    noise = list_from_config(Config,experimentName,'noises')
    freq = list_from_config(Config,experimentName,'freqs')
    lmax = int(Config.getfloat(experimentName,'lmax'))
    lknee = float(Config.get(experimentName,'lknee').split(',')[0])
    alpha = float(Config.get(experimentName,'alpha').split(',')[0])
    fsky = Config.getfloat(experimentName,'fsky')
    SZProf = SZ_Cluster_Model(cc,clusterDict,rms_noises = noise,fwhms=beam,freqs=freq,lknee=lknee,alpha=alpha)

    hmf = Halo_MF(cc,mexp_edges,z_edges)

    hmf.sigN = siggrid.copy()
    Ns = np.multiply(hmf.N_of_z_SZ(fsky,SZProf),np.diff(z_edges).reshape(1,z_edges.size-1))
    return Ns.ravel().sum()
Example #2
0
    def __init__(self,iniFile,expName,gridName,version,ClusterCosmology):
        Config = SafeConfigParser()
        Config.optionxform=str
        Config.read(iniFile)

        self.cc = ClusterCosmology

        bigDataDir = Config.get('general','bigDataDirectory')
        self.clttfile = Config.get('general','clttfile')
        self.constDict = dict_from_section(Config,'constants')
        self.clusterDict = dict_from_section(Config,'cluster_params')
        #version = Config.get('general','version')
        beam = list_from_config(Config,expName,'beams')
        noise = list_from_config(Config,expName,'noises')
        freq = list_from_config(Config,expName,'freqs')
        lknee = list_from_config(Config,expName,'lknee')[0]
        alpha = list_from_config(Config,expName,'alpha')[0]
        self.fsky = Config.getfloat(expName,'fsky')

        self.mgrid,self.zgrid,siggrid = pickle.load(open(bigDataDir+"szgrid_"+expName+"_"+gridName+ "_v" + version+".pkl",'rb'))

        #self.cc = ClusterCosmology(self.fparams,self.constDict,clTTFixFile=self.clttfile)
        self.SZProp = SZ_Cluster_Model(self.cc,self.clusterDict,rms_noises = noise,fwhms=beam,freqs=freq,lknee=lknee,alpha=alpha)
        self.HMF = Halo_MF(self.cc,self.mgrid,self.zgrid)
        self.HMF.sigN = siggrid.copy()
Example #3
0
    def __init__(self,iniFile,test_cat_file,fix_params,mmin=14.3):

        self.fix_params = fix_params
        Config = SafeConfigParser()
        Config.optionxform=str
        Config.read(iniFile)

        self.fparams = {}
        for (key, val) in Config.items('params'):
            if ',' in val:
                param, step = val.split(',')
                self.fparams[key] = float(param)
            else:
                self.fparams[key] = float(val)

        bigDataDir = Config.get('general','bigDataDirectory')
        self.clttfile = Config.get('general','clttfile')
        self.constDict = dict_from_section(Config,'constants')

        logm_min = 14.0
        logm_max = 15.702
        logm_spacing = 0.01
        self.mgrid = np.arange(logm_min,logm_max,logm_spacing)
        self.zgrid = np.arange(0.1,2.001,0.05)

        self.cc = ClusterCosmology(self.fparams,self.constDict,clTTFixFile=self.clttfile)
        self.HMF = Halo_MF(self.cc,self.mgrid,self.zgrid)

        self.fsky = old_div(987.5,41252.9612)
        self.mmin = mmin
        clust_cat = test_cat_file + '.fits' 
        self.clst_z,self.clst_zerr,self.clst_m,self.clst_merr = read_test_mock_cat(clust_cat,self.mmin)
Example #4
0
    def __init__(self, inifile, expname, gridname, version):
        self.params = None
        self.inifile = inifile
        self.config = ConfigParser()
        self.config.optionxform = str
        self.config.read(self.inifile)

        self.constdict = dict_from_section(self.config, 'constants')
        self.clttfile = self.config.get('general', 'clttfile')

        self.expname = expname
        self.gridname = gridname
        self.version = version

        self.saveid = self.expname + "_" + self.gridname + "_v" + self.version
Example #5
0
File: futils.py Project: mntw/szar
def get_cc(ini):
    Config = ConfigParser()
    Config.optionxform = str
    Config.read(ini)
    clttfile = Config.get('general', 'clttfile')
    constDict = dict_from_section(Config, 'constants')

    fparams = {}
    for (key, val) in Config.items('params'):
        if ',' in val:
            param, step = val.split(',')
            fparams[key] = float(param)
        else:
            fparams[key] = float(val)

    cc = ClusterCosmology(fparams, constDict, clTTFixFile=clttfile)
    return cc
Example #6
0
    def __init__(self, iniFile, kmin=1e-4, kmax=5., knum=200):

        Config = SafeConfigParser()
        Config.optionxform = str
        Config.read(iniFile)

        self.fparams = {}
        for (key, val) in Config.items('params'):
            if ',' in val:
                param, step = val.split(',')
                self.fparams[key] = float(param)
            else:
                self.fparams[key] = float(val)

        bigDataDir = Config.get('general', 'bigDataDirectory')
        self.clttfile = Config.get('general', 'clttfile')
        self.constDict = dict_from_section(Config, 'constants')
        self.clusterDict = dictFromSection(Config, 'cluster_params')
        version = Config.get('general', 'version')
        beam = listFromConfig(Config, expName, 'beams')
        noise = listFromConfig(Config, expName, 'noises')
        freq = listFromConfig(Config, expName, 'freqs')
        lknee = listFromConfig(Config, expName, 'lknee')[0]
        alpha = listFromConfig(Config, expName, 'alpha')[0]

        self.mgrid, self.zgrid, siggrid = pickle.load(
            open(
                bigDataDir + "szgrid_" + expName + "_" + gridName + "_v" +
                version + ".pkl", 'rb'))

        self.cc = ClusterCosmology(self.fparams,
                                   self.constDict,
                                   clTTFixFile=self.clttfile)
        self.HMF = Halo_MF(self.cc, self.mgrid, self.zgrid)

        if powerZK is None:
            self.kh, self.pk = self._pk_lin(self.HMF.zarr, kmin, kmax, knum)
        else:
            assert kh is not None
            self.kh = kh
            self.pk = powerZK
Example #7
0
def sel_counts_from_config(Config,bigDataDir,version,expName,gridName,calName,mexp_edges,z_edges,lkneeTOverride=None,alphaTOverride=None,zmin=-np.inf,zmax=np.inf,mmin=-np.inf,mmax=np.inf,recalculate=False,override_params=None):
    suffix = ""
    if lkneeTOverride is not None:
        suffix += "_"+str(lkneeTOverride)
    if alphaTOverride is not None:
        suffix += "_"+str(alphaTOverride)
    mgrid,zgrid,siggrid = pickle.load(open(bigDataDir+"szgrid_"+expName+"_"+gridName+ "_v" + version+suffix+".pkl",'rb'),encoding='latin1')
    experimentName = expName
    cosmoDict = dict_from_section(Config,"params")
    constDict = dict_from_section(Config,'constants')
    clusterDict = dict_from_section(Config,'cluster_params')
    clttfile = Config.get("general","clttfile")
    if override_params is not None:
        for key in override_params.keys():
            cosmoDict[key] = override_params[key]
    # print(cosmoDict)
    cc = ClusterCosmology(cosmoDict,constDict,clTTFixFile = clttfile)

    beam = list_from_config(Config,experimentName,'beams')
    noise = list_from_config(Config,experimentName,'noises')
    freq = list_from_config(Config,experimentName,'freqs')
    lmax = int(Config.getfloat(experimentName,'lmax'))
    lknee = float(Config.get(experimentName,'lknee').split(',')[0])
    alpha = float(Config.get(experimentName,'alpha').split(',')[0])
    fsky = Config.getfloat(experimentName,'fsky')
    SZProf = SZ_Cluster_Model(cc,clusterDict,rms_noises = noise,fwhms=beam,freqs=freq,lknee=lknee,alpha=alpha)

    hmf = Halo_MF(cc,mexp_edges,z_edges)

    hmf.sigN = siggrid.copy()

    saveId = save_id(expName,gridName,calName,version)
    # Fiducial number counts

    if recalculate:
        from . import counts
        # get s/n q-bins
        qs = list_from_config(Config,'general','qbins')
        qspacing = Config.get('general','qbins_spacing')
        if qspacing=="log":
            qbin_edges = np.logspace(np.log10(qs[0]),np.log10(qs[1]),int(qs[2])+1)
        elif qspacing=="linear":
            qbin_edges = np.linspace(qs[0],qs[1],int(qs[2])+1)
        else:
            raise ValueError
        calFile = mass_grid_name_owl(bigDataDir,calName)        
        mexp_edges, z_edges, lndM = pickle.load(open(calFile,"rb"))
        dN_dmqz = hmf.N_of_mqz_SZ(lndM,qbin_edges,SZProf)
        nmzq = counts.getNmzq(dN_dmqz,mexp_edges,z_edges,qbin_edges)
    else:
        nmzq = np.load(fid_file(bigDataDir,saveId))
    nmzq = nmzq*fsky

    zs = (z_edges[1:]+z_edges[:-1])/2.
    zsel = np.logical_and(zs>zmin,zs<=zmax)

    M_edges = 10**mexp_edges
    M = (M_edges[1:]+M_edges[:-1])/2.
    Mexp = np.log10(M)
    msel = np.logical_and(Mexp>mmin,Mexp<=mmax)
    
    Ns = nmzq.sum(axis=-1)[msel,:][:,zsel]
    return Ns #.ravel().sum()
Example #8
0
File: noise.py Project: mntw/szar
    frac = npfact / (1. + npfact)

    ans = np.multiply(frac**2, V0)
    return ans


INIFILE = "input/pipeline.ini"
expName = 'S4-1.0-CDT'
gridName = 'grid-owl2'
version = '0.6'

Config = ConfigParser()
Config.optionxform = str
Config.read(INIFILE)
clttfile = Config.get('general', 'clttfile')
constDict = dict_from_section(Config, 'constants')

fparams = {}
for (key, val) in Config.items('params'):
    if ',' in val:
        param, step = val.split(',')
        fparams[key] = float(param)
    else:
        fparams[key] = float(val)

expName = 'S4-1.0-CDT'
gridName = 'grid-owl2'
version = '0.6'
cc = ClusterCosmology(fparams, constDict, clTTFixFile=clttfile)
clst = Clustering(INIFILE, expName, gridName, version, cc)
Example #9
0
bigDataDir = Config.get('general', 'bigDataDirectory')
pzcutoff = Config.getfloat('general', 'photoZCutOff')

mgrid, zgrid, siggrid = pickle.load(open(
    bigDataDir + "szgrid_" + expName + "_" + gridName + "_v" + version +
    ".pkl", 'rb'),
                                    encoding='latin1')

assert np.all(mgrid == mexprange)
assert np.all(zrange == zgrid)

saveId = expName + "_" + gridName + "_" + calName + "_v" + version

from orphics.io import dict_from_section, list_from_config
constDict = dict_from_section(Config, 'constants')
clusterDict = dict_from_section(Config, 'cluster_params')
beam = list_from_config(Config, expName, 'beams')
noise = list_from_config(Config, expName, 'noises')
freq = list_from_config(Config, expName, 'freqs')
lknee = list_from_config(Config, expName, 'lknee')[0]
alpha = list_from_config(Config, expName, 'alpha')[0]
fsky = Config.getfloat(expName, 'fsky')

massMultiplier = Config.getfloat('general', 'mass_calib_factor')

clttfile = Config.get('general', 'clttfile')

# get s/n q-bins
qs = list_from_config(Config, 'general', 'qbins')
qspacing = Config.get('general', 'qbins_spacing')
Example #10
0
    def __init__(self,iniFile,parDict,nemoOutputDir,noiseFile,fix_params,fitsfile,test=False,simtest=False,simpars=False):
        self.fix_params = fix_params
        self.test = test
        self.simtest = simtest
        self.simpars = simpars
        Config = SafeConfigParser()
        Config.optionxform=str
        Config.read(iniFile)

        self.fparams = {}
        for (key, val) in Config.items('params'):
            if ',' in val:
                param, step = val.split(',')
                self.fparams[key] = float(param)
            else:
                self.fparams[key] = float(val)

        bigDataDir = Config.get('general','bigDataDirectory')
        self.clttfile = Config.get('general','clttfile')
        self.constDict = dict_from_section(Config,'constants')
        #version = Config.get('general','version')
        
        #self.mgrid,self.zgrid,siggrid = pickle.load(open(bigDataDir+"szgrid_"+expName+"_"+gridName+ "_v" + version+".pkl",'rb'))
        logm_min = 13.7
        logm_max = 15.72
        logm_spacing = 0.02
        self.mgrid = np.arange(logm_min,logm_max,logm_spacing)
        self.zgrid = np.arange(0.1,2.01,0.1)        
        #print self.mgrid
        #print self.zgrid
        self.qmin = 5.6
        
        self.cc = ClusterCosmology(self.fparams,self.constDict,clTTFixFile=self.clttfile)
        self.HMF = Halo_MF(self.cc,self.mgrid,self.zgrid)

        self.diagnosticsDir=nemoOutputDir+"diagnostics" 
        self.filteredMapsDir=nemoOutputDir+"filteredMaps"
        self.tckQFit=simsTools.fitQ(parDict, self.diagnosticsDir, self.filteredMapsDir)
        FilterNoiseMapFile = nemoOutputDir + noiseFile
        MaskMapFile = self.diagnosticsDir + '/areaMask.fits'
        
        #if self.simtest or self.simpars:
        #    print "mock catalog"
            #clust_cat = nemoOutputDir + 'mockCatalog_equD56.fits' #'ACTPol_mjh_cluster_cat.fits'
        #    clust_cat = nemoOutputDir + 'mockCat_D56equ_v22.fits' #'ACTPol_mjh_cluster_cat.fits'
        #    self.clst_z,self.clst_zerr,self.clst_y0,self.clst_y0err = read_mock_cat(clust_cat,self.qmin)
        #else:
        #    print "real catalog"
        #    clust_cat = nemoOutputDir + 'E-D56Clusters.fits' #'ACTPol_mjh_cluster_cat.fits'
        #    self.clst_z,self.clst_zerr,self.clst_y0,self.clst_y0err = read_clust_cat(clust_cat,self.qmin)

        clust_cat = nemoOutputDir + fitsfile 
        if self.simtest or self.simpars:
            print("mock catalog")
            self.clst_z,self.clst_zerr,self.clst_y0,self.clst_y0err = read_mock_cat(clust_cat,self.qmin)
        else:
            print("real catalog")
            self.clst_z,self.clst_zerr,self.clst_y0,self.clst_y0err = read_clust_cat(clust_cat,self.qmin)

        self.rms_noise_map  = read_MJH_noisemap(FilterNoiseMapFile,MaskMapFile)
        print ('Number of clusters',len(self.clst_zerr))
        #self.wcs=astWCS.WCS(FilterNoiseMapFile) 
        #self.clst_RA,self.clst_DEC,
        #self.clst_xmapInd,self.clst_ymapInd = self.Find_nearest_pixel_ind(self.clst_RA,self.clst_DEC)

        self.num_noise_bins = 10
        self.area_rads = old_div(987.5,41252.9612) # fraction of sky - ACTPol D56-equ specific
        self.LgY = np.arange(-6,-3,0.01)

        count_temp,bin_edge =np.histogram(np.log10(self.rms_noise_map[self.rms_noise_map>0]),bins=self.num_noise_bins)
        self.frac_of_survey = count_temp*1.0 / np.sum(count_temp)
        self.thresh_bin = 10**(old_div((bin_edge[:-1] + bin_edge[1:]),2.))
Example #11
0
    def __init__(self,iniFile,parDict,nemoOutputDir,noiseFile,params,parlist,mass_grid_log=None,z_grid=None,randoms=False):

        Config = SafeConfigParser()
        Config.optionxform=str
        Config.read(iniFile)

        if mass_grid_log:
            logm_min,logm_max,logm_spacing = mass_grid_log
        else:
            logm_min = 12.7
            logm_max = 15.72
            logm_spacing = 0.04
        if z_grid:
            zmin,zmax,zdel = z_grid
        else:
            zmin = 0.0
            zmax = 2.01
            zdel = 0.1



        self.fparams = {}
        for (key, val) in Config.items('params'):
            if ',' in val:
                param, step = val.split(',')
                self.fparams[key] = float(param)
            else:
                self.fparams[key] = float(val)

        self.param_vals = alter_fparams(self.fparams,parlist,params)

        bigDataDir = Config.get('general','bigDataDirectory')
        self.clttfile = Config.get('general','clttfile')
        self.constDict = dict_from_section(Config,'constants')

        if mass_grid_log:
            logm_min,logm_max,logm_spacing = mass_grid_log
        else:
            logm_min = 12.7
            logm_max = 15.72
            logm_spacing = 0.04
        if z_grid:
            zmin,zmax,zdel = z_grid
        else:
            zmin = 0.0
            zmax = 2.01
            zdel = 0.1
        
        if randoms:
            self.rand = 1
        else:
            self.rand = 0

        self.mgrid = np.arange(logm_min,logm_max,logm_spacing)
        self.zgrid = np.arange(zmin,zmax,zdel)

        self.Medges = 10.**self.mgrid
        self.Mcents = (self.Medges[1:]+self.Medges[:-1])/2.
        self.Mexpcents = np.log10(self.Mcents)
        self.zcents = (self.zgrid[1:]+self.zgrid[:-1])/2.

        self.cc = ClusterCosmology(self.param_vals,self.constDict,clTTFixFile=self.clttfile)
        self.HMF = Halo_MF(self.cc,self.mgrid,self.zgrid)

        self.diagnosticsDir=nemoOutputDir+"diagnostics"
        self.filteredMapsDir=nemoOutputDir+"filteredMaps"
        self.tckQFit=simsTools.fitQ(parDict, self.diagnosticsDir, self.filteredMapsDir)
        FilterNoiseMapFile = nemoOutputDir + noiseFile
        MaskMapFile = self.diagnosticsDir + '/areaMask.fits'

        self.rms_noise_map = read_MJH_noisemap(FilterNoiseMapFile,MaskMapFile)
        
        self.wcs=astWCS.WCS(FilterNoiseMapFile)

        self.fsky = 987.5/41252.9612 # in rads ACTPol D56-equ specific
        self.scat_val = 0.2
        self.seedval = np.int(np.round(time.time())) #1
Example #12
0
File: testV3.py Project: mntw/szar
pmaxN=5
numps=1000
tmaxN=5
numts=1000

# dell=1
# pmaxN=25
# numps=10000
# tmaxN=25
# numts=10000





cosmoDict = dict_from_section(Config,cosmologyName)
#cosmoDict = dict_from_section(Config,'WMAP9')
constDict = dict_from_section(Config,'constants')
clusterDict = dict_from_section(Config,clusterParams)
cc = ClusterCosmology(cosmoDict,constDict,pickling=True,clTTFixFile = "data/cltt_lensed_Feb18.txt")

# make an SZ profile example


SZProfExample = SZ_Cluster_Model(clusterCosmology=cc,clusterDict=clusterDict,rms_noises = noise,fwhms=beam,freqs=freq,lmax=lmax,lknee=lknee,alpha=alpha,dell=dell,pmaxN=pmaxN,numps=numps,v3mode=2,fsky=0.4)


#MM = 10**np.linspace(13.,14.,5)
#print SZProfExample.quickVar(MM,zz,tmaxN=tmaxN,numts=numts)

#sys.exit()