def main(): """Solves the gate scheduling problem.""" model = cp_model.CpModel() jobs = [[3, 3], [2, 5], [1, 3], [3, 7], [7, 3], [2, 2], [2, 2], [5, 5], [10, 2], [4, 3], [2, 6], [1, 2], [6, 8], [4, 5], [3, 7]] max_length = 10 horizon = sum(t[0] for t in jobs) num_jobs = len(jobs) all_jobs = range(num_jobs) intervals = [] intervals0 = [] intervals1 = [] performed = [] starts = [] ends = [] demands = [] for i in all_jobs: # Create main interval. start = model.NewIntVar(0, horizon, 'start_%i' % i) duration = jobs[i][0] end = model.NewIntVar(0, horizon, 'end_%i' % i) interval = model.NewIntervalVar(start, duration, end, 'interval_%i' % i) starts.append(start) intervals.append(interval) ends.append(end) demands.append(jobs[i][1]) performed_on_m0 = model.NewBoolVar('perform_%i_on_m0' % i) performed.append(performed_on_m0) # Create an optional copy of interval to be executed on machine 0. start0 = model.NewIntVar(0, horizon, 'start_%i_on_m0' % i) end0 = model.NewIntVar(0, horizon, 'end_%i_on_m0' % i) interval0 = model.NewOptionalIntervalVar(start0, duration, end0, performed_on_m0, 'interval_%i_on_m0' % i) intervals0.append(interval0) # Create an optional copy of interval to be executed on machine 1. start1 = model.NewIntVar(0, horizon, 'start_%i_on_m1' % i) end1 = model.NewIntVar(0, horizon, 'end_%i_on_m1' % i) interval1 = model.NewOptionalIntervalVar(start1, duration, end1, performed_on_m0.Not(), 'interval_%i_on_m1' % i) intervals1.append(interval1) # We only propagate the constraint if the tasks is performed on the machine. model.Add(start0 == start).OnlyEnforceIf(performed_on_m0) model.Add(start1 == start).OnlyEnforceIf(performed_on_m0.Not()) # Max Length constraint (modeled as a cumulative) model.AddCumulative(intervals, demands, max_length) # Choose which machine to perform the jobs on. model.AddNoOverlap(intervals0) model.AddNoOverlap(intervals1) # Objective variable. makespan = model.NewIntVar(0, horizon, 'makespan') model.AddMaxEquality(makespan, ends) model.Minimize(makespan) # Symmetry breaking. model.Add(performed[0] == 0) # Solve model. solver = cp_model.CpSolver() solver.Solve(model) # Output solution. if visualization.RunFromIPython(): output = visualization.SvgWrapper(solver.ObjectiveValue(), max_length, 40.0) output.AddTitle('Makespan = %i' % solver.ObjectiveValue()) color_manager = visualization.ColorManager() color_manager.SeedRandomColor(0) for i in all_jobs: performed_machine = 1 - solver.Value(performed[i]) start = solver.Value(starts[i]) d_x = jobs[i][0] d_y = jobs[i][1] s_y = performed_machine * (max_length - d_y) output.AddRectangle(start, s_y, d_x, d_y, color_manager.RandomColor(), 'black', 'j%i' % i) output.AddXScale() output.AddYScale() output.Display() else: print('Solution') print(' - makespan = %i' % solver.ObjectiveValue()) for i in all_jobs: performed_machine = 1 - solver.Value(performed[i]) start = solver.Value(starts[i]) print(' - Job %i starts at %i on machine %i' % (i, start, performed_machine)) print('Statistics') print(' - conflicts : %i' % solver.NumConflicts()) print(' - branches : %i' % solver.NumBranches()) print(' - wall time : %f ms' % solver.WallTime())
def solve_hidato(puzzle, index): """Solve the given hidato table.""" # Create the model. model = cp_model.CpModel() r = len(puzzle) c = len(puzzle[0]) if not visualization.RunFromIPython(): print('') print('----- Solving problem %i -----' % index) print('') print(('Initial game (%i x %i)' % (r, c))) print_matrix(puzzle) # # declare variables # positions = [ model.NewIntVar(0, r * c - 1, 'p[%i]' % i) for i in range(r * c) ] # # constraints # model.AddAllDifferent(positions) # # Fill in the clues # for i in range(r): for j in range(c): if puzzle[i][j] > 0: model.Add(positions[puzzle[i][j] - 1] == i * c + j) # Consecutive numbers much touch each other in the grid. # We use an allowed assignment constraint to model it. close_tuples = build_pairs(r, c) for k in range(0, r * c - 1): model.AddAllowedAssignments([positions[k], positions[k + 1]], close_tuples) # # solution and search # solver = cp_model.CpSolver() status = solver.Solve(model) if status == cp_model.OPTIMAL: if visualization.RunFromIPython(): output = visualization.SvgWrapper(10, r, 40.0) for i, var in enumerate(positions): val = solver.Value(var) x = val % c y = val // c color = 'white' if puzzle[y][x] == 0 else 'lightgreen' output.AddRectangle(x, r - y - 1, 1, 1, color, 'black', str(i + 1)) output.AddTitle('Puzzle %i solved in %f s' % (index, solver.WallTime())) output.Display() else: print_solution( [solver.Value(x) for x in positions], r, c, ) print('Statistics') print(' - conflicts : %i' % solver.NumConflicts()) print(' - branches : %i' % solver.NumBranches()) print(' - wall time : %f s' % solver.WallTime())
# Objective variable. makespan = model.NewIntVar(0, horizon, 'makespan') model.AddMaxEquality(makespan, ends) model.Minimize(makespan) # Symmetry breaking. model.Add(performed[0] == 0) # Solve model. solver = cp_model.CpSolver() solver.Solve(model) # Output solution. if visualization.RunFromIPython(): output = visualization.SvgWrapper(solver.ObjectiveValue(), max_length, 40.0) output.AddTitle('Makespan = %i' % solver.ObjectiveValue()) color_manager = visualization.ColorManager() color_manager.SeedRandomColor(0) for i in all_jobs: performed_machine = 1 - solver.Value(performed[i]) start = solver.Value(starts[i]) dx = jobs[i][0] dy = jobs[i][1] sy = performed_machine * (max_length - dy) output.AddRectangle(start, sy, dx, dy, color_manager.RandomColor(), 'black', 'j%i' % i) output.AddXScale() output.AddYScale()