Example #1
0
def rectifyRaster(src, dst_filename, dst_proj, gcps, tmp_filename='tmpfile_remove.tif', resampling_type='near',\
 data_type='Float32', output_format='GTiff', dst_options=['COMPRESS=LZW']):
    """
	Takes GCPs created using gdal api, adds them to the not rectified image, and rectifies it.
		* resampling_type keywords are: 'near','bilinear', 'cubic', 'cubicspline', 'lanczos'
		* data_type keywords are: 'Byte', 'Float32', 'Float64', 'UInt16' , 'UInt32', 'Int16', 'Int32' 
	
	"""

    # legacy: dictionary of possible settings for resampling_type
    # resTypes = { 'near':'GRA_NearestNeighbour', 'bilinear':'GRA_Bilinear', 'cubic':'GRA_Cubic', \
    #	'cubicspline':'GRA_CubicSpline','lanczos':'GRA_Lanczos' }

    driver = gdal.GetDriverByName(output_format)
    # dst = driver.Create(dst_filename, src.RasterXSize, src.RasterYSize, src.RasterCount, \
    # 		gdal.GetDataTypeByName(data_type), dst_options)
    dst = driver.CreateCopy(tmp_filename, src, 1, dst_options)

    dst.SetGCPs(gcps, src.GetProjection())
    dst.SetGeoTransform(gdal.GCPsToGeoTransform(gcps))
    dst.SetProjection(dst_proj)

    del dst, src  # flush

    # @FIX find a way to transform the data with Python bindings
    #'-srcnodata','0', '-dstnodata','None',
    subprocess.call([
        'gdalwarp', '-r', resampling_type, '-ot', data_type, '-co',
        'COMPRESS=LZW', '-q', tmp_filename, dst_filename
    ])

    os.unlink(tmp_filename)  # remove the tmp file created during execution
Example #2
0
    def convert(self):
        options=self.map.options

        if options.after_name:
            name_patt=self.name
        elif options.after_map:
            name_patt=self.map.file
        else:
            name_patt=self.img_file
        base = dst_path(name_patt, options.dst_dir)
        if options.long_name:
            base += ' - ' +  "".join([c for c in self.name
                                if c .isalpha() or c.isdigit() or c in '-_.() '])
        dst_dir=os.path.split(base)[0]
        out_format='VRT'
        ext='.'+out_format.lower()

        try:
            start_dir=os.getcwd()
            if dst_dir:
                os.chdir(dst_dir)

            dst_file = os.path.abspath(os.path.basename(base+ext)) # output file
            dst_drv = gdal.GetDriverByName(out_format)
            dst_ds = dst_drv.CreateCopy(
                dst_file.encode(locale.getpreferredencoding()),
                self.raster_ds,
                0
            )
            dst_ds.SetProjection(self.srs)

            #double x = 0.0, double y = 0.0, double z = 0.0, double pixel = 0.0,
            #double line = 0.0, char info = "", char id = ""
            gcps=[gdal.GCP(c[0],c[1],0,p[0],p[1],'',i) for i,p,c in self.refs]
            dst_ds.SetGCPs(gcps,self.refs.srs())
            dst_geotr=gdal.GCPsToGeoTransform(gcps) # if len(gcps) < 5 else (0.0, 1.0, 0.0, 0.0, 0.0, 1.0)
            dst_ds.SetGeoTransform(dst_geotr)
            poly,gmt_data=self.cut_poly(dst_ds)
            if poly:
                dst_ds.SetMetadataItem('CUTLINE',poly)
            if self.name:
                dst_ds.SetMetadataItem('DESCRIPTION',self.name.encode('utf-8'))

            dst_ds = None # close dataset
#            re_sub_file(dst_file, [
#                    ('^.*<GeoTransform>.*\n',''),
#                    ('^.*<SRS>.*\n','')
#                    ])
        finally:
            self.raster_ds = None
            os.chdir(start_dir)

        if options.get_cutline: # print cutline then return
            print poly
            return
        if gmt_data and options.cut_file: # create shapefile with a cut polygon
            with open(base+'.gmt','w+') as f:
                f.write(gmt_data)

        return dst_file
Example #3
0
def SetGCPsToGeoTransform(cornerPointUL, cornerPointUR, cornerPointLR,
                          cornerPointLL, frameCenterLon, frameCenterLat):
    ''' Make Geotranform from pixel to lon lat coordinates '''
    gcps = []

    global gcornerPointUL
    gcornerPointUL = cornerPointUL
    global gcornerPointUR
    gcornerPointUR = cornerPointUR
    global gcornerPointLR
    gcornerPointLR = cornerPointLR
    global gcornerPointLL
    gcornerPointLL = cornerPointLL
    global gframeCenterLat
    gframeCenterLat = frameCenterLat
    global gframeCenterLon
    gframeCenterLon = frameCenterLon

    global geotransform
    geotransform = gdal.GCPsToGeoTransform(gcps)

    src = np.float64(
        np.array([[0.0, 0.0], [xSize, 0.0], [xSize, ySize], [0.0, ySize]]))
    dst = np.float64(
        np.array([cornerPointUL, cornerPointUR, cornerPointLR, cornerPointLL]))
    geotransform = from_points(src, dst)

    if geotransform is None:
        qgsu.showUserAndLogMessage(QCoreApplication.translate(
            "QgsFmvUtils", 'Unable to extract a geotransform.'),
                                   onlyLog=True)

    return
Example #4
0
def test_gcps2gt_1():

    gt = gdal.GCPsToGeoTransform(
        _list2gcps([(0.0, 0.0, 400000, 370000), (100.0, 0.0, 410000, 370000),
                    (100.0, 200.0, 410000, 368000)]))
    assert gdaltest.geotransform_equals(
        gt, (400000.0, 100.0, 0.0, 370000.0, 0.0, -10.0), 0.000001)
Example #5
0
def print_layer_list(names, sds):
    print "----- Accessible layers: -----"
    out_names = [s.rsplit(':', 1)[1] for s in names]
    for ind, name in enumerate(out_names):
        geotrans = gdal.GCPsToGeoTransform(sds[ind].GetGCPs())
        if geotrans:
            print "%s. %s" % (ind, name)
Example #6
0
def main(argv):
    if len(argv) < 2:
        print("Usage: gcps2wld.py source_file")
        return 1

    filename = argv[1]
    dataset = gdal.Open(filename)
    if dataset is None:
        print('Unable to open %s' % filename)
        return 1

    gcps = dataset.GetGCPs()

    if gcps is None or not gcps:
        print('No GCPs found on file ' + filename)
        return 1

    geotransform = gdal.GCPsToGeoTransform(gcps)

    if geotransform is None:
        print('Unable to extract a geotransform.')
        return 1

    print(geotransform[1])
    print(geotransform[4])
    print(geotransform[2])
    print(geotransform[5])
    print(geotransform[0] + 0.5 * geotransform[1] + 0.5 * geotransform[2])
    print(geotransform[3] + 0.5 * geotransform[4] + 0.5 * geotransform[5])
Example #7
0
def test_gcps2gt_3():

    approx_ok = 0
    gt = gdal.GCPsToGeoTransform(
        _list2gcps([(0.0, 0.0, 400000, 370000), (100.0, 0.0, 410000, 370000),
                    (100.0, 200.0, 410000, 368000),
                    (0.0, 200.0, 400000, 360000)]), approx_ok)
    assert gt is None, 'Expected failure when no good solution.'
Example #8
0
def test_gcps2gt_2():

    gt = gdal.GCPsToGeoTransform(
        _list2gcps([(0.0, 0.0, 400000, 370000), (100.0, 0.0, 410000, 370000),
                    (100.0, 200.0, 410000, 368000),
                    (0.0, 200.0, 400000, 368000.01)]))
    assert gdaltest.geotransform_equals(
        gt, (400000.0, 100.0, 0.0, 370000.0025, -5e-05, -9.999975), 0.000001)
Example #9
0
def SetGCPsToGeoTransform(cornerPointUL, cornerPointUR, cornerPointLR,
                          cornerPointLL, frameCenterLon, frameCenterLat, ele):
    ''' Make Geotranform from pixel to lon lat coordinates '''
    gcps = []

    global gcornerPointUL, gcornerPointUR, gcornerPointLR, gcornerPointLL, gframeCenterLat, gframeCenterLon, geotransform_affine, geotransform

    # TEMP FIX : If have elevation the geotransform is wrong
    if ele:
        del cornerPointUL[-1]
        del cornerPointUR[-1]
        del cornerPointLR[-1]
        del cornerPointLL[-1]

    gcornerPointUL = cornerPointUL
    gcornerPointUR = cornerPointUR
    gcornerPointLR = cornerPointLR
    gcornerPointLL = cornerPointLL

    gframeCenterLat = frameCenterLat
    gframeCenterLon = frameCenterLon

    Height = GetFrameCenter()[2]

    gcp = gdal.GCP(cornerPointUL[1], cornerPointUL[0], Height, 0, 0,
                   "Corner Upper Left", "1")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointUR[1], cornerPointUR[0], Height, xSize, 0,
                   "Corner Upper Right", "2")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointLR[1], cornerPointLR[0], Height, xSize, ySize,
                   "Corner Lower Right", "3")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointLL[1], cornerPointLL[0], Height, 0, ySize,
                   "Corner Lower Left", "4")
    gcps.append(gcp)
    gcp = gdal.GCP(frameCenterLon, frameCenterLat, Height, xSize / 2,
                   ySize / 2, "Center", "5")
    gcps.append(gcp)

    geotransform_affine = gdal.GCPsToGeoTransform(gcps)

    src = np.float64(
        np.array([[0.0, 0.0], [xSize, 0.0], [xSize, ySize], [0.0, ySize]]))
    dst = np.float64(
        np.array([cornerPointUL, cornerPointUR, cornerPointLR, cornerPointLL]))

    try:
        geotransform = from_points(src, dst)
    except Exception:
        pass

    if geotransform is None:
        qgsu.showUserAndLogMessage("",
                                   "Unable to extract a geotransform.",
                                   onlyLog=True)

    return
Example #10
0
    def __init__(self, dataset):
        super(CoordinateMapper, self).__init__()

        projection = ''
        self._geotransform = None

        if dataset.GetGCPCount():
            try:
                projection = dataset.GetGCPProjection()
                gcps = dataset.GetGCPs()
                gcps = _fixedGCPs(gcps)  # @TODO: remove
                self._geotransform = gdal.GCPsToGeoTransform(gcps)
            except Exception:
                _log.warning(
                    'unable to retrieve geo-transform and '
                    'projection from GCPs for %s', dataset)

        if not self._geotransform:
            projection = dataset.GetProjection()
            if not projection:
                projection = dataset.GetProjectionRef()
            self._geotransform = dataset.GetGeoTransform()

        if not projection:
            raise InvalidProjection('unable to get a valid projection')

        #sref = osr.SpatialReference(projection) # do not work for Pymod API
        sref = osr.SpatialReference()
        sref.ImportFromWkt(projection)

        if not sref.IsGeographic():
            sref_target = osr.SpatialReference()
            sref_target.SetWellKnownGeogCS(self.geogCS)
            self._srTransform = osr.CoordinateTransformation(sref, sref_target)
        else:
            self._srTransform = None

        # Xgeo = GT(0) + Xpixel*GT(1) + Yline*GT(2)
        # Ygeo = GT(3) + Xpixel*GT(4) + Yline*GT(5)
        #
        # --    --   --       --   --      --   --       --
        # | Xgeo |   | m11 m12 |   | Xpixel |   | xoffset |
        # |      | = |         | * |        | + |         |
        # | Ygeo |   | m21 m22 |   | Yline  |   | yoffset |
        # --    --   --       --   --      --   --       --
        xoffset, m11, m12, yoffset, m21, m22 = self._geotransform
        _log.debug('geotransform = %s', self._geotransform)

        # Direct transform
        M = np.array(((m11, m12), (m21, m22)))
        C = np.array(([xoffset], [yoffset]))
        self._direct_transform = (M, C)

        # Invrse transform
        M = np.linalg.inv(M)
        C = -np.dot(M, C)
        self._inverse_transform = (M, C)
Example #11
0
    def process(self, annotation_files, grid_pts=100, writeback=False):
        """
        entry point into class functionality
        """

        # read annotation xml into dictionary
        for f in annotation_files:

            doc = self.readAnnotationFile(f)
            if doc is not None:

                # get scene image dimensions
                print('Densifying geolocation grid in annotation file: {}'.
                      format(f))
                dims = self.getDimensions(doc)

                # extract tie points from annotation schema and reproject to mercator
                gcps = {'latlon': self.getTiePoints(doc)}
                gcps['mercator'] = self.reprojectTiePoints(
                    gcps['latlon'], {
                        'source': self._proj['latlon'],
                        'target': self._proj['mercator']
                    })

                # create denser tie point grid
                x_grid, y_grid = self.getDenseGrid(dims, grid_pts)
                dense_grid = {
                    'pixel': x_grid.flatten(),
                    'line': y_grid.flatten()
                }

                # interpolate parameter values onto dense grid
                dense_grid.update(
                    self.interpolateFields(
                        doc, (gcps['latlon']['pixel'], gcps['latlon']['line']),
                        (x_grid, y_grid)))

                # interpolate gcps onto dense grid
                geo_transform = gdal.GCPsToGeoTransform(gcps['mercator'])
                print('{}: Mean sum of squares: {} m '.format(
                    os.path.basename(f),
                    self.computeError(gcps['mercator'], geo_transform)))

                dense_grid['gcps'] = self.interpolateTiePoints(
                    geo_transform, dense_grid['pixel'], dense_grid['line'])

                # optionally visualize dense grid map coordinates
                if writeback:
                    self.plotDenseGrid(dense_grid, grid_pts)

                # write denser tie point grid to updated annotation file and geotiff
                self.writeAnnotationFile(doc, dense_grid)
                # self.writeImageFile( doc, dense_grid )
                print('... OK!')

        return
Example #12
0
def SetGCPsToGeoTransform(cornerPointUL, cornerPointUR, cornerPointLR,
                          cornerPointLL, frameCenterLon, frameCenterLat, ele):
    ''' Make Geotranform from pixel to lon lat coordinates '''
    gcps = []
    gv.setCornerUL(cornerPointUL)
    gv.setCornerUR(cornerPointUR)
    gv.setCornerLR(cornerPointLR)
    gv.setCornerLL(cornerPointLL)
    gv.setFrameCenter(frameCenterLat, frameCenterLon)

    xSize = gv.getXSize()
    ySize = gv.getYSize()

    Height = GetFrameCenter()[2]

    gcp = gdal.GCP(cornerPointUL[1], cornerPointUL[0], Height, 0, 0,
                   "Corner Upper Left", "1")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointUR[1], cornerPointUR[0], Height, xSize, 0,
                   "Corner Upper Right", "2")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointLR[1], cornerPointLR[0], Height, xSize, ySize,
                   "Corner Lower Right", "3")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointLL[1], cornerPointLL[0], Height, 0, ySize,
                   "Corner Lower Left", "4")
    gcps.append(gcp)
    gcp = gdal.GCP(frameCenterLon, frameCenterLat, Height, xSize / 2,
                   ySize / 2, "Center", "5")
    gcps.append(gcp)

    at = gdal.GCPsToGeoTransform(gcps)
    gv.setAffineTransform(at)

    src = np.float64(
        np.array([[0.0, 0.0], [xSize, 0.0], [xSize, ySize], [0.0, ySize],
                  [xSize / 2.0, ySize / 2.0]]))
    dst = np.float64(
        np.array([[cornerPointUL[0], cornerPointUL[1]],
                  [cornerPointUR[0], cornerPointUR[1]],
                  [cornerPointLR[0], cornerPointLR[1]],
                  [cornerPointLL[0], cornerPointLL[1]],
                  [frameCenterLat, frameCenterLon]]))

    try:
        geotransform, _ = findHomography(src, dst)
        gv.setTransform(geotransform)
    except Exception:
        pass

    if geotransform is None:
        qgsu.showUserAndLogMessage("",
                                   "Unable to extract a geotransform.",
                                   onlyLog=True)

    return
Example #13
0
def gcps2gt_4():

    gt = gdal.GCPsToGeoTransform(_list2gcps([
        (0.0, 0.0, 400000, 370000),
    ]))
    if gt is not None:
        gdaltest.post_reason('Expected failure for single GCP.')
        return 'failure'

    return 'success'
Example #14
0
def gcps2gt_1():

    gt = gdal.GCPsToGeoTransform(
        _list2gcps([(0.0, 0.0, 400000, 370000), (100.0, 0.0, 410000, 370000),
                    (100.0, 200.0, 410000, 368000)]))
    if not gdaltest.geotransform_equals(
            gt, (400000.0, 100.0, 0.0, 370000.0, 0.0, -10.0), 0.000001):
        return 'failure'

    return 'success'
def do_rgs(data_time_value, rgs_file_path):
    """ 配准
    :param data_time_value: dict 原始图像的信息-GCJ02
        {
            "time" : "",          #时间
            "timestamp" : "",     #时间戳
            "url" : "",           #下载链接
            "extent" : "",        #范围
            "req_pnt" : "",       #该瓦片请求的点坐标
            "file_path" : ""      #文件的path
        }
    :param rgs_file_path: str 配准后保存的路径
    :return: rgs_data_item: dict/None
        {
            "extent" : "", #范围-WGS84
            "file_path" : "", #该文件的路径
        }
    """
    # 将tiff保存到配准文件夹
    origin_file_path = data_time_value["file_path"]
    im = Image.open(origin_file_path)
    im.save(rgs_file_path)

    # 转换extent
    extent_gcj02 = data_time_value[
        "extent_gcj02"]  #[21.532796186275732, 115.14559029127062, 25.66504821372427, 119.65495970872936]
    extent_wgs84 = gcj02towgs84_extent(
        extent_gcj02
    )  #[21.53519080438208, 115.14078044126353, 25.66805217057752, 119.65050502755392]
    x1, y1, x2, y2 = extent_wgs84

    # 用extent_wgs84对rgs_file_path文件进行配准
    ds = gdal.Open(rgs_file_path, gdal.GA_Update)  #打开影像
    if not ds:
        return None
    # 创建坐标系
    srs = osr.SpatialReference()
    srs.SetWellKnownGeogCS('WGS84')
    # 相关信息
    rows = ds.RasterYSize  # 行数
    cols = ds.RasterXSize  # 列数

    # 创建地面控制点:经度、纬度、z,照片列数,照片行数
    gcps = [
        gdal.GCP(y1, x2, 0, 0, 0),  # 左上
        gdal.GCP(y2, x2, 0, cols - 1, 0),  # 右上
        gdal.GCP(y1, x1, 0, 0, rows - 1),  # 左下
        gdal.GCP(y2, x1, 0, cols - 1, rows - 1)  # 右下
    ]
    ds.SetGCPs(gcps, srs.ExportToWkt())
    ds.SetProjection(srs.ExportToWkt())
    ds.SetGeoTransform(gdal.GCPsToGeoTransform(gcps))
    del ds

    return {"extent": extent_wgs84, "file_path": rgs_file_path}
Example #16
0
def gcps2gt_2():

    gt = gdal.GCPsToGeoTransform(
        _list2gcps([(0.0, 0.0, 400000, 370000), (100.0, 0.0, 410000, 370000),
                    (100.0, 200.0, 410000, 368000),
                    (0.0, 200.0, 400000, 368000.01)]))
    if not gdaltest.geotransform_equals(
            gt,
        (400000.0, 100.0, 0.0, 370000.0025, -5e-05, -9.999975), 0.000001):
        return 'fail'

    return 'success'
Example #17
0
def gcps2gt_3():

    approx_ok = 0
    gt = gdal.GCPsToGeoTransform(
        _list2gcps([(0.0, 0.0, 400000, 370000), (100.0, 0.0, 410000, 370000),
                    (100.0, 200.0, 410000, 368000),
                    (0.0, 200.0, 400000, 360000)]), approx_ok)
    if gt is not None:
        gdaltest.post_reason('Expected failure when no good solution.')
        return 'failure'

    return 'success'
Example #18
0
def geographic_info(ds, srsout=None):
    # Read geotransform matrix and source reference system
    srs = osr.SpatialReference()
    if ds.GetGCPCount():
        gcps = ds.GetGCPs()
        srs.ImportFromWkt(ds.GetGCPProjection())
        geomatrix = gdal.GCPsToGeoTransform(gcps)
    else:
        gcps = []
        if not ds.GetProjection():
            raise ValueError('no geographic info in "%s"' %
                                                        ds.GetDescription())
        srs.ImportFromWkt(ds.GetProjection())
        geomatrix = ds.GetGeoTransform()

    if geomatrix == (0.0, 1.0, 0.0, 0.0, 0.0, 1.0):
        raise ValueError('no geographic info in "%s"' % ds.GetDescription())

    # Set the target reference system
    srsout = makesrs(srsout)

    # Instantiate the coordinate transformer
    transformer = osr.CoordinateTransformation(srs, srsout)

    # dataset corners setup
    corners = []
    for id_, (pixel, line) in enumerate((
                                (0,                  0),
                                (0,                  ds.RasterYSize - 1),
                                (ds.RasterXSize - 1, ds.RasterYSize - 1),
                                (ds.RasterXSize - 1, 0))):

        X = geomatrix[0] + geomatrix[1] * pixel + geomatrix[2] * line
        Y = geomatrix[3] + geomatrix[4] * pixel + geomatrix[5] * line

        # Shift to the center of the pixel
        X += geomatrix[1] / 2.0
        Y += geomatrix[5] / 2.0
        Z = 0.

        (x, y, z) = transformer.TransformPoint(X, Y, Z)

        gcp = gdal.GCP(x, y, z, pixel, line, '', str(id_ + 1))
        corners.append(gcp)

    # convert GCPs to the targer srs
    outgcps = []
    for gcp in gcps:
        (x, y, z) = transformer.TransformPoint(gcp.GCPX, gcp.GCPY, gcp.GCPZ)
        gcp = gdal.GCP(x, y, z, gcp.GCPPixel, gcp.GCPLine, gcp.Info, gcp.Id)
        outgcps.append(gcp)

    return corners, outgcps
Example #19
0
def SetGCPsToGeoTransform(cornerPointUL, cornerPointUR, cornerPointLR,
                          cornerPointLL, frameCenterLon, frameCenterLat):
    ''' Make Geotranform from pixel to lon lat coordinates '''
    gcps = []

    global gcornerPointUL
    gcornerPointUL = cornerPointUL
    global gcornerPointUR
    gcornerPointUR = cornerPointUR
    global gcornerPointLR
    gcornerPointLR = cornerPointLR
    global gcornerPointLL
    gcornerPointLL = cornerPointLL
    global gframeCenterLat
    gframeCenterLat = frameCenterLat
    global gframeCenterLon
    gframeCenterLon = frameCenterLon
    global geotransform
    global geotransform_affine

    Height = GetFrameCenter()[2]

    gcp = gdal.GCP(cornerPointUL[1], cornerPointUL[0], Height, 0, 0,
                   "Corner Upper Left", "1")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointUR[1], cornerPointUR[0], Height, xSize, 0,
                   "Corner Upper Right", "2")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointLR[1], cornerPointLR[0], Height, xSize, ySize,
                   "Corner Lower Right", "3")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointLL[1], cornerPointLL[0], Height, 0, ySize,
                   "Corner Lower Left", "4")
    gcps.append(gcp)
    gcp = gdal.GCP(frameCenterLon, frameCenterLat, Height, xSize / 2,
                   ySize / 2, "Center", "5")
    gcps.append(gcp)

    geotransform_affine = gdal.GCPsToGeoTransform(gcps)

    src = np.float64(
        np.array([[0.0, 0.0], [xSize, 0.0], [xSize, ySize], [0.0, ySize]]))
    dst = np.float64(
        np.array([cornerPointUL, cornerPointUR, cornerPointLR, cornerPointLL]))
    geotransform = from_points(src, dst)

    if geotransform is None:
        qgsu.showUserAndLogMessage("",
                                   "Unable to extract a geotransform.",
                                   onlyLog=True)

    return
def test_gcps2gt_8():

    gt = gdal.GCPsToGeoTransform(_list2gcps([
        (0.01, 0.04, -87.05528672907, 39.22759504228),
        (0.01, 2688.02, -86.97079900719, 39.27075713986),
        (4031.99, 2688.04, -87.05960736744, 39.37569137000),
        (1988.16, 1540.80, -87.055069186699924, 39.304963106777514),
        (1477.41, 2400.83, -87.013419295885001, 39.304705030894979),
        (1466.02, 2376.92, -87.013906298363295, 39.304056190007913),
    ]))
    gt_expected = (-87.056612873288, -2.232795668658e-05, 3.178617809303e-05,
                   39.227856615716, 2.6091510188921e-05, 1.596921026218e-05)
    assert gdaltest.geotransform_equals(gt, gt_expected, 0.00001)
Example #21
0
def gcps2gt_7():

    gt = gdal.GCPsToGeoTransform(_list2gcps([
        (400000, 370000, 400000, 370000),
        (410000, 368000, 410000, 368000),
        (410000, 370000, 410000, 370000),
        (400000, 368000, 400000, 368000),
    ]))
    if not gdaltest.geotransform_equals(
            gt, (0.0, 1.0, 0.0, 0.0, 0.0, 1.0), 0.000001):
        return 'fail'

    return 'success'
Example #22
0
def SetGCPsToGeoTransform(cornerPointUL, cornerPointUR, cornerPointLR,
                          cornerPointLL, frameCenterLon, frameCenterLat):
    ''' Make Geotranform from pixel to lon lat coordinates '''
    gcps = []

    global gcornerPointUL
    gcornerPointUL = cornerPointUL
    global gcornerPointUR
    gcornerPointUR = cornerPointUR
    global gcornerPointLR
    gcornerPointLR = cornerPointLR
    global gcornerPointLL
    gcornerPointLL = cornerPointLL
    global gframeCenterLat
    gframeCenterLat = frameCenterLat
    global gframeCenterLon
    gframeCenterLon = frameCenterLon

    Height = 0
    gcp = gdal.GCP(cornerPointUL[1], cornerPointUL[0], Height, 0, 0,
                   "Corner Upper Left", "1")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointUR[1], cornerPointUR[0], Height, xSize, 0,
                   "Corner Upper Right", "2")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointLR[1], cornerPointLR[0], Height, xSize, ySize,
                   "Corner Lower Right", "3")
    gcps.append(gcp)
    gcp = gdal.GCP(cornerPointLL[1], cornerPointLL[0], Height, 0, ySize,
                   "Corner Lower Left", "4")
    gcps.append(gcp)
    gcp = gdal.GCP(frameCenterLon, frameCenterLat, Height, xSize / 2,
                   ySize / 2, "Center", "5")
    gcps.append(gcp)

    global geotransform
    geotransform = gdal.GCPsToGeoTransform(gcps)

    if geotransform is None:
        qgsu.showUserAndLogMessage(QCoreApplication.translate(
            "QgsFmvUtils", 'Unable to extract a geotransform.'),
                                   onlyLog=True)

    return
Example #23
0
def copy_and_transform(file_name, sds):
    format = "GTiff"
    print "Format: GTiff"
    driver = gdal.GetDriverByName(format)
    file_name += '.tif'
    print "File name: %s" % file_name
    driver = gdal.GetDriverByName(format)

    dst_ds = driver.CreateCopy(file_name, sds, 1)

    print "Status: Created"

    geotrans = gdal.GCPsToGeoTransform(sds.GetGCPs())
    print "Geotrans: ", geotrans

    if geotrans:
        # geotrans = (20.776085394125101, 0.061360126841990, 0, 65.899963721633995, 0, -0.061360126841990)
        dst_ds.SetGeoTransform(geotrans)
        print "Status: Transformed"
Example #24
0
def georef(input_file,
           reference_file,
           output_file,
           feature_name,
           flann,
           transform_type,
           gcp_output_shp,
           gcp_output_txt,
           tile,
           offset,
           ratio=0.75,
           convert=False):
    """Georeference the input using the training image and save the result in outputFile. 
    A ratio can be given to select more or less matches (defaults to 0.75)."""
    detector, norm = init_feature(feature_name)
    train, kp_train, des_train = getImageKeyPointsAndDescriptors(
        reference_file, detector, tile, offset, convert)
    query, kp_query, des_query = getImageKeyPointsAndDescriptors(
        input_file, detector, tile, offset, convert)
    two_sides_matches = match(norm, flann, des_train, des_query, ratio)

    MIN_MATCH_COUNT = 3

    affine = True
    if len(two_sides_matches) > MIN_MATCH_COUNT:
        src_pts = np.float32([
            kp_train[m.queryIdx].pt for m in two_sides_matches
        ]).reshape(-1, 1, 2)
        dst_pts = np.float32([
            kp_query[m.trainIdx].pt for m in two_sides_matches
        ]).reshape(-1, 1, 2)

        if affine:
            M, mask = cv.estimateAffine2D(src_pts, dst_pts)
        else:
            M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC)
        matchesMask = mask.ravel().tolist()

        ds = gdal.Open(reference_file)
        x_offset, px_w, rot1, y_offset, px_h, rot2 = ds.GetGeoTransform()
        logging.debug("%s : Transform: %f, %f, %f, %f, %f, %f",
                      datetime.datetime.now(), x_offset, px_w, rot1, y_offset,
                      px_h, rot2)

        gcp_list = []
        geo_t = ds.GetGeoTransform()
        # gcp_string = ''
        logging.debug("%s : %d matches", datetime.datetime.now(),
                      len(matchesMask))
        for i, good_match in enumerate(matchesMask):
            if good_match == 1:
                p1 = kp_train[two_sides_matches[i].queryIdx].pt
                p2 = kp_query[two_sides_matches[i].trainIdx].pt
                pp = gdal.ApplyGeoTransform(geo_t, p1[0], p1[1])
                logging.debug(f"GCP geot = (%f,%f) -> (%f,%f)", p1[0], p1[1],
                              pp[0], pp[1])
                logging.debug(f"Matched with (%f,%f)", p2[0], p2[1])
                z = 0
                # info = "GCP from pixel %f, %f" % (p1[0], p1[1])
                gcp = gdal.GCP(pp[0], pp[1], z, p2[0], p2[1])  # , info, i)
                # print ("GCP     = (" + str(p2[0]) +","+ str(p2[1]) + ") -> (" + str(pp[0]) +","+ str(pp[1]) + ")")
                # gcp_string += ' -gcp '+" ".join([str(p2[0]),str(p2[1]),str(pp[0]), str(pp[1])])
                gcp_list.append(gcp)
        logging.debug("%s : %d GCPs", datetime.datetime.now(), len(gcp_list))

        translate_t = gdal.GCPsToGeoTransform(gcp_list)
        translate_inv_t = gdal.InvGeoTransform(translate_t)
        logging.debug(len(translate_t))
        logging.debug("geotransform = %s", translate_t)
        logging.debug(len(translate_inv_t))
        logging.debug("invgeotransform = %s", translate_inv_t)
        # trans_gcp_list = []
        dst_gcp_list = []
        mapResiduals = 0.0
        geoResiduals = 0.0
        for gcp in gcp_list:
            # Inverse geotransform to get the corresponding pixel
            pix = gdal.ApplyGeoTransform(translate_inv_t, gcp.GCPX, gcp.GCPY)
            logging.debug("GCP = (%d,%d) -> (%d,%d)", gcp.GCPPixel,
                          gcp.GCPLine, gcp.GCPX, gcp.GCPY)
            logging.debug(" => (%d,%d)", pix[0], pix[1])
            map_dX = gcp.GCPPixel - pix[0]
            map_dY = gcp.GCPLine - pix[1]
            map_residual = map_dX * map_dX + map_dY * map_dY
            mapResiduals = mapResiduals + map_residual
            # trans_gcp_list.append(pix)
            # Apply the transform to get the GCP location in the output SRS
            pp = gdal.ApplyGeoTransform(translate_t, gcp.GCPPixel, gcp.GCPLine)
            z = 0
            out_gcp = gdal.GCP(pp[0], pp[1], z, gcp.GCPPixel, gcp.GCPLine)
            logging.debug("GCP = (%d,%d) -> (%d,%d)", out_gcp.GCPPixel,
                          out_gcp.GCPLine, pp[0], pp[1])
            # gcp_string += ' -gcp '+" ".join([str(p2[0]),str(p2[1]),str(pp[0]), str(pp[1])])
            dX = gcp.GCPX - pp[0]
            dY = gcp.GCPY - pp[1]
            residual = dX * dX + dY * dY
            geoResiduals = geoResiduals + residual
            logging.debug("map residual = %f, %f = %f", map_dX, map_dY,
                          map_residual)
            logging.debug("residual = %f, %f = %f", dX, dY, residual)
            dst_gcp_list.append(out_gcp)

        logging.debug(f"map residuals %s", mapResiduals)
        logging.debug(f"geo residuals %s", geoResiduals)
        # print (gcp_string)
        # h,w = train.shape
        # pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
        # dst = cv.perspectiveTransform(pts,M)

        # img2 = cv.polylines(query,[np.int32(dst)],True,255,3, cv.LINE_AA)

        src_ds = gdal.Open(input_file)
        # translate and warp the inputFile using GCPs and polynomial of order 1
        dst_ds = gdal.Translate('',
                                src_ds,
                                outputSRS=ds.GetProjection(),
                                GCPs=gcp_list,
                                format='MEM')
        tps = False
        if transform_type == 'poly1':
            polynomialOrder = 1
            gdal.Warp(output_file,
                      dst_ds,
                      tps=tps,
                      polynomialOrder=polynomialOrder,
                      dstNodata=1)
        elif transform_type == 'poly2':
            polynomialOrder = 2
            gdal.Warp(output_file,
                      dst_ds,
                      tps=tps,
                      polynomialOrder=polynomialOrder,
                      dstNodata=1)
        elif transform_type == 'poly3':
            polynomialOrder = 3
            gdal.Warp(output_file,
                      dst_ds,
                      tps=tps,
                      polynomialOrder=polynomialOrder,
                      dstNodata=1)
        elif transform_type == 'tps':
            tps = True
            gdal.Warp(output_file, dst_ds, tps=tps, dstNodata=1)
        else:
            polynomialOrder = 1
            gdal.Warp(output_file,
                      dst_ds,
                      tps=tps,
                      polynomialOrder=polynomialOrder,
                      dstNodata=1)

        if gcp_output_shp is not None:
            saveGCPsAsShapefile(dst_gcp_list,
                                osr.SpatialReference(ds.GetProjection()),
                                gcp_output_shp)
            saveGCPsAsText(dst_gcp_list, gcp_output_txt)

        draw_params = dict(
            matchColor=(0, 255, 0),  # draw matches in green color
            singlePointColor=None,
            matchesMask=matchesMask,  # draw only inliers
            flags=2)

        img3 = cv.drawMatches(train, kp_train, query, kp_query,
                              two_sides_matches, None, **draw_params)
        return img3

    else:
        logging.error("Not enough matches are found - %d/%d",
                      len(two_sides_matches), MIN_MATCH_COUNT)
Example #25
0
    def __getmetadata__(self, f=None):
        '''Populate the metadata'''
        if not f: f = self.fileinfo['filepath']
        self._gdaldataset = geometry.OpenDataset(f)

        led = glob.glob(os.path.dirname(f) +
                        '/[Ll][Ee][Aa][Dd]*')[0]  #volume file

        meta = open(led, 'rb').read()
        '''
        metadata has 4 records, each is 4320 (LS) or 6120 (SPOT) bytes long:
        File descriptor record;
        Scene header record;
        Map projection (scene-related) ancillary record;
        Radiometric transformation ancillary record.
        '''

        #Record 2 - Scene header record
        record = 2
        recordlength = 4320  #LS 5
        satellite = utilities.readbinary(meta, (record - 1) * recordlength,
                                         309, 324)

        #Scene ID, path/row & image date/time
        start, stop = 37, 52
        sceneid = utilities.readbinary(meta, (record - 1) * recordlength,
                                       start, stop)
        start, stop = 165, 180
        pathrow = utilities.readbinary(meta, (record - 1) * recordlength,
                                       start, stop)[1:]
        start, stop = 117, 148
        imgdate = utilities.readbinary(meta, (record - 1) * recordlength,
                                       start, stop)
        self.metadata['imgdate'] = time.strftime(
            utilities.datetimeformat,
            time.strptime(imgdate[0:14], '%Y%m%d%H%M%S'))  #ISO 8601

        #Ascending/descending flag
        start, stop = 357, 372
        if utilities.readbinary(meta, (record - 1) * recordlength, start,
                                stop) == 'D':
            self.metadata['orbit'] = 'Descending'
        else:
            self.metadata['orbit'] = 'Ascending'

        #Processing level
        start, stop = 1573, 1588
        self.metadata['level'] = utilities.readbinary(
            meta, (record - 1) * recordlength, start, stop)

        #Bands
        start, stop = 1653, 1659
        bands = []
        actbands = utilities.readbinary(meta, (record - 1) * recordlength,
                                        start, stop)
        for i in range(0, 7):  #Loop thru the 7 LS 5 bands
            if actbands[i] == '1': bands.append(str(i + 1))
            self._gdaldataset.GetRasterBand(i + 1).SetNoDataValue(0)

        #Record 3 - Map projection (scene-related) ancillary record
        record = 3

        #Bands, rows & columns and rotation
        nbands = int(self._gdaldataset.RasterCount)
        start, stop = 333, 348
        ncols = float(
            utilities.readbinary(meta, (record - 1) * recordlength, start,
                                 stop))
        start, stop = 349, 364
        nrows = float(
            utilities.readbinary(meta, (record - 1) * recordlength, start,
                                 stop))
        start, stop = 445, 460
        self.metadata['rotation'] = float(
            utilities.readbinary(meta, (record - 1) * recordlength, start,
                                 stop))
        if abs(self.metadata['rotation']) < 1:
            self.metadata['orientation'] = 'Map oriented'
            self.metadata['rotation'] = 0.0
        else:
            self.metadata['orientation'] = 'Path oriented'

        #Sun elevation and azimuth
        start, stop = 605, 620
        self.metadata['sunelevation'] = float(
            utilities.readbinary(meta, (record - 1) * recordlength, start,
                                 stop))
        start, stop = 621, 636
        self.metadata['sunazimuth'] = float(
            utilities.readbinary(meta, (record - 1) * recordlength, start,
                                 stop))

        #geometry.CellSizes
        start, stop = 365, 396
        (cellx, celly) = map(
            float,
            utilities.readbinary(meta, (record - 1) * recordlength, start,
                                 stop).split())
        start, stop = 397, 412
        projection = utilities.readbinary(meta, (record - 1) * recordlength,
                                          start, stop).split()
        datum = projection[0]
        zone = projection[1]

        # lat/lons
        start, stop = 765, 892
        coords = utilities.readbinary(meta, (record - 1) * recordlength, start,
                                      stop).split()
        uly, ulx, ury, urx, lry, lrx, lly, llx = map(float, coords)
        ext = [[ulx, uly], [urx, ury], [lrx, lry], [llx, lly], [ulx, uly]]

        if int(zone) != 0:
            # UTM
            type = 'UTM'
            units = 'm'
            #start,stop =  637,764
            #coords = utilities.readbinary(meta,(record-1)*recordlength,start,stop).split()
            #uly,ulx,ury,urx,lry,lrx,lly,llx = map(float, coords)
            #ext=[[ulx,uly],[urx,ury],[lrx,lry],[llx,lly],[ulx,uly]]

            if datum == 'GDA94': epsg = int('283' + zone)
            elif datum == 'AGD66': epsg = int('202' + zone)
            elif datum == 'WGS84': epsg = int('327' + zone)

        else:  #Assume
            type = 'GEO'
            units = 'deg'
            if datum == 'GDA94': epsg = 4283
            else: epsg = 4326  #Assume WGS84
            gcps = []
            i = 0
            lr = [[0, 0], [ncols, 0], [ncols, nrows], [0, nrows]]
            while i < len(ext) - 1:  #don't need the last xy pair
                gcp = gdal.GCP()
                gcp.GCPPixel, gcp.GCPLine = lr[i]
                gcp.GCPX, gcp.GCPY = ext[i]
                gcp.Id = str(i)
                gcps.append(gcp)
                i += 1
            geotransform = gdal.GCPsToGeoTransform(gcps)
            cellx, celly = geometry.CellSize(geotransform)
            rotation = geometry.Rotation(geotransform)

        srs = osr.SpatialReference()
        srs.ImportFromEPSG(epsg)
        srs = srs.ExportToWkt()

        self.metadata['satellite'] = satellite
        if satellite == 'LANDSAT-5':
            self.metadata['sensor'] = 'TM'
            self.metadata['filetype'] = 'CEOS/Landsat CCRS Format'
        else:
            self.metadata['sensor'] = 'HRV'
            self.metadata['filetype'] = 'CEOS/SPOT CCRS Format'
        self.metadata['filesize'] = sum(
            [os.path.getsize(file) for file in self.filelist])
        self.metadata['srs'] = srs
        self.metadata['epsg'] = epsg
        self.metadata['units'] = units
        self.metadata['cols'] = ncols
        self.metadata['rows'] = nrows
        self.metadata['nbands'] = nbands
        self.metadata['bands'] = ','.join(bands)
        self.metadata['nbits'] = 8
        self.metadata['datatype'] = 'Byte'
        self.metadata['nodata'] = 0
        self.metadata['cellx'], self.metadata['celly'] = map(
            float, [cellx, celly])
        self.metadata['UL'] = '%s,%s' % tuple(ext[0])
        self.metadata['UR'] = '%s,%s' % tuple(ext[1])
        self.metadata['LR'] = '%s,%s' % tuple(ext[2])
        self.metadata['LL'] = '%s,%s' % tuple(ext[3])
        metadata = self._gdaldataset.GetMetadata()
        self.metadata['metadata'] = '\n'.join(
            ['%s: %s' % (m, hdf_self.metadata[m]) for m in metadata])
        self.metadata['compressionratio'] = 0
        self.metadata['compressiontype'] = 'None'
        self.extent = ext
Example #26
0
    def __getmetadata__(self, f=None):
        '''Read Metadata for ASTER HDF images as GDAL doesn't.'''
        if not f: f = self.fileinfo['filepath']

        hdf_sd = self._gdaldataset.GetSubDatasets()
        hdf_sd = [sd for sd, sz in hdf_sd if 'ImageData' in sd]
        hdf_md = self._hdf_md

        #sd,sz = hdf_sd[0]
        sd = hdf_sd[0]
        sd = geometry.OpenDataset(sd)

        nbands = len(hdf_sd)
        ncols = []
        nrows = []
        nbits = []
        bands = []
        datatypes = []
        cellxy = []
        for i in range(0, len(hdf_md['PROCESSEDBANDS']), 2):
            band = hdf_md['PROCESSEDBANDS'][i:i + 2]
            if i / 2 + 1 <= 4:
                bands.append('VNIR' + band)
                cellxy.append('15')
            elif i / 2 + 1 <= 10:
                bands.append('SWIR' + band)
                cellxy.append('30')
            else:
                bands.append('TIR' + band)
                cellxy.append('90')
            if band.isdigit(): band = str(int(band))  #Get rid of leading zero
            cols, rows, bytes = map(
                int, hdf_md['IMAGEDATAINFORMATION%s' % band].split(','))
            if bytes == 1: datatypes.append('Byte')
            elif bytes == 2: datatypes.append('UInt16')
            ncols.append(str(cols))
            nrows.append(str(rows))
            nbits.append(str(bytes * 8))
        ncols = ','.join(ncols)
        nrows = ','.join(nrows)
        nbits = ','.join(nbits)
        bands = ','.join(bands)
        datatypes = ','.join(datatypes)
        cellxy = ','.join(cellxy)

        uly, ulx = [float(xy) for xy in hdf_md['UPPERLEFT'].split(',')]
        ury, urx = [float(xy) for xy in hdf_md['UPPERRIGHT'].split(',')]
        lry, lrx = [float(xy) for xy in hdf_md['LOWERRIGHT'].split(',')]
        lly, llx = [float(xy) for xy in hdf_md['LOWERLEFT'].split(',')]
        ext = [[ulx, uly], [urx, ury], [lrx, lry], [llx, lly], [ulx, uly]]

        #SRS reported by GDAL is slightly dodgy, GDA94 is not recognised and doesn't set the North/South properly
        #Get it anyway so we can work out if it's GDA94 based on the spheroid
        srs = sd.GetGCPProjection()
        src_srs = osr.SpatialReference(srs)
        tgt_srs = osr.SpatialReference()
        geogcs = osr.SpatialReference()
        if src_srs.GetAttrValue('SPHEROID') == 'GRS 1980':
            geogcs.ImportFromEPSG(4283)  #Assume 'GDA94'
        else:
            geogcs.ImportFromEPSG(4326)  #Assume 'WGS84'
        tgt_srs.CopyGeogCSFrom(geogcs)

        if hdf_md['PROCESSINGLEVELID'].upper() == '1A':
            units = 'deg'
        else:
            #projparams=map(float, hdf_md['PROJECTIONPARAMETERS1'].split(','))
            if hdf_md['MPMETHOD1'] == 'UTM':  #Universal Transverse Mercator
                if uly < 0:
                    bNorth = False  #GDAL doesn't set the North/South properly
                else:
                    bNorth = True
                nZone = int(hdf_md['UTMZONECODE1'])
                tgt_srs.SetUTM(nZone, bNorth)
                units = 'm'
            #Other projections not (yet?) implemented...
            #elif hdf_md['MPMETHOD1'] == 'PS':#Polar Stereographic
            #    #dfCenterLon = ? GTCP projection params don't list cenlon/lat for PS
            #    dfCenterLat = ?
            #    dfScale = ?
            #    tgt_srs.SetPS(dfCenterLat,dfCenterLon,dfScale,0.0,0.0)
            #elif hdf_md['MPMETHOD1'] == 'LAMCC':#Lambert Conformal Conic
            #    dfCenterLon = ?
            #    dfCenterLat = ?
            #    dfStdP1 = ?
            #    dfStdP2 = ?
            #    tgt_srs.SetLCC(dfStdP1,dfStdP2,dfCenterLat,dfCenterLon,0,0)
            #elif hdf_md['MPMETHOD1'] == 'SOM':#Space Oblique Mercator
            #    dfCenterLon = ?
            #    dfCenterLat = ?
            #    srs.SetMercator(dfCenterLat,dfCenterLon,0,0,0)
            #elif hdf_md['MPMETHOD1'] == 'EQRECT':#Equi-Rectangular
            #    dfCenterLon = ?
            #    dfCenterLat = ?
            #    tgt_srs.SetMercator(dfCenterLat,dfCenterLon,0,0,0)
            else:  #Assume Geog
                units = 'deg'

        srs = tgt_srs.ExportToWkt()

        self.metadata['UL'] = '%s,%s' % tuple(ext[0])
        self.metadata['UR'] = '%s,%s' % tuple(ext[1])
        self.metadata['LR'] = '%s,%s' % tuple(ext[2])
        self.metadata['LL'] = '%s,%s' % tuple(ext[3])

        self.metadata['metadata'] = '\n'.join(
            ['%s: %s' % (m, hdf_md[m]) for m in hdf_md])

        self.metadata['satellite'] = 'Terra'
        self.metadata['sensor'] = 'ASTER'
        self.metadata['filetype'] = self._gdaldataset.GetDriver(
        ).ShortName + '/' + self._gdaldataset.GetDriver().LongName + ' (ASTER)'
        self.metadata['sceneid'] = hdf_md['ASTERSCENEID']
        self.metadata['level'] = hdf_md['PROCESSINGLEVELID']
        if '-' in hdf_md['CALENDARDATE']: imgdate = hdf_md['CALENDARDATE']
        else:
            imgdate = time.strftime(utilities.dateformat,
                                    time.strptime(hdf_md['CALENDARDATE'],
                                                  '%Y%m%d'))  #ISO 8601
        imgtime = hdf_md.get('TIMEOFDAY')
        if imgtime:
            self.metadata['imgdate'] = time.strftime(
                utilities.datetimeformat,
                time.strptime(imgdate + imgtime[0:6],
                              '%Y-%m-%d%H%M%S'))  #ISO 8601
        else:
            self.metadata['imgdate'] = imgdate
        #self.metadata['imgdate'] = hdf_md['CALENDARDATE']
        self.metadata['cloudcover'] = float(hdf_md['SCENECLOUDCOVERAGE'])
        if hdf_md['FLYINGDIRECTION'] == 'DE':
            self.metadata['orbit'] = 'Descending'
        else:
            self.metadata['orbit'] = 'Ascending'
        self.metadata['rotation'] = float(
            hdf_md.get('MAPORIENTATIONANGLE',
                       hdf_md.get('SCENEORIENTATIONANGLE')))
        if abs(self.metadata['rotation']) < 1.0:
            self.metadata['orientation'] = 'Map oriented'
        else:
            self.metadata['orientation'] = 'Path oriented'
        self.metadata['sunazimuth'], self.metadata['sunelevation'] = map(
            float, hdf_md['SOLARDIRECTION'].split(','))
        self.metadata['viewangle'] = float(hdf_md['POINTINGANGLE'])
        self.metadata['cols'] = ncols
        self.metadata['rows'] = nrows
        self.metadata['nbands'] = nbands
        self.metadata['datatype'] = datatypes
        self.metadata['nbits'] = nbits
        self.metadata['nodata'] = ','.join(['0' for i in range(0, nbands)])
        self.metadata['bands'] = bands
        self.metadata['resampling'] = hdf_md.get(
            'RESMETHOD1')  #Assume same for all...
        self.metadata['srs'] = srs
        self.metadata['epsg'] = spatialreferences.IdentifyAusEPSG(srs)
        self.metadata['units'] = units
        self.metadata['cellx'], self.metadata['celly'] = cellxy, cellxy

        #Geotransform
        ext = [[ulx, uly], [urx, ury], [lrx, lry], [llx, lly], [ulx, uly]]
        ncols = map(int, str(ncols).split(','))
        nrows = map(int, str(nrows).split(','))
        cellx, celly = [], []
        j = 0
        while j < len(ncols):
            gcps = []
            i = 0
            lr = [[0, 0], [ncols[j], 0], [ncols[j], nrows[j]], [0, nrows[j]]]
            while i < len(ext) - 1:  #don't need the last xy pair
                gcp = gdal.GCP()
                gcp.GCPPixel, gcp.GCPLine = lr[i]
                gcp.GCPX, gcp.GCPY = ext[i]
                gcp.Id = str(i)
                gcps.append(gcp)
                i += 1
            j += 1
            geotransform = gdal.GCPsToGeoTransform(gcps)
            x, y = geometry.CellSize(geotransform)
            cellx.append(str(x))
            celly.append(str(abs(y)))

        self.metadata['cellx'] = ','.join(cellx)
        self.metadata['celly'] = ','.join(celly)

        srs = osr.SpatialReference()
        srs.ImportFromEPSG(4326)
        self.metadata['srs'] = srs.ExportToWkt()

        self.metadata['UL'] = '%s,%s' % tuple(ext[0])
        self.metadata['UR'] = '%s,%s' % tuple(ext[1])
        self.metadata['LR'] = '%s,%s' % tuple(ext[2])
        self.metadata['LL'] = '%s,%s' % tuple(ext[3])

        self.metadata['metadata'] = '\n'.join(
            ['%s: %s' % (m, hdf_md[m]) for m in hdf_md])

        self.metadata['filesize'] = sum(
            [os.path.getsize(file) for file in self.filelist])
        self.metadata['compressionratio'] = 0
        self.metadata['compressiontype'] = 'None'
        self.extent = ext

        #Build gdaldataset object for overviews
        vrtcols = ncols[0]
        vrtrows = nrows[0]
        #vrtbands=[sd for sd,sn in hdf_sd[0:4]]#The 4 VNIR bands
        vrtbands = hdf_sd[0:4]  #The 4 VNIR bands
        vrt = geometry.CreateSimpleVRT(vrtbands, vrtcols, vrtrows,
                                       datatypes.split(',')[0])
        self._gdaldataset = geometry.OpenDataset(vrt)
        for i in range(1, 5):
            self._gdaldataset.GetRasterBand(i).SetNoDataValue(0)
Example #27
0
def test_gcps2gt_4():

    gt = gdal.GCPsToGeoTransform(_list2gcps([
        (0.0, 0.0, 400000, 370000),
    ]))
    assert gt is None, 'Expected failure for single GCP.'
Example #28
0
def getGCP(reference_file,
           kp_query,
           kp_train,
           two_sides_matches,
           min_matches=3):
    if len(two_sides_matches) > min_matches:
        src_pts = np.float32([
            kp_train[m.queryIdx].pt for m in two_sides_matches
        ]).reshape(-1, 1, 2)
        dst_pts = np.float32([
            kp_query[m.trainIdx].pt for m in two_sides_matches
        ]).reshape(-1, 1, 2)

        M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC)
        matchesMask = mask.ravel().tolist()

        ds = gdal.Open(reference_file)
        x_offset, px_w, rot1, y_offset, px_h, rot2 = ds.GetGeoTransform()
        logging.debug("%s : Transform: %f, %f, %f, %f, %f, %f",
                      datetime.datetime.now(), x_offset, px_w, rot1, y_offset,
                      px_h, rot2)

        gcp_list = []
        geo_t = ds.GetGeoTransform()
        # gcp_string = ''
        logging.debug("%s : %d matches", datetime.datetime.now(),
                      len(matchesMask))
        for i, good_match in enumerate(matchesMask):
            if good_match == 1:
                p1 = kp_train[two_sides_matches[i].queryIdx].pt
                p2 = kp_query[two_sides_matches[i].trainIdx].pt
                pp = gdal.ApplyGeoTransform(geo_t, p1[0], p1[1])
                logging.debug(f"GCP geot = (%f,%f) -> (%f,%f)", p1[0], p1[1],
                              pp[0], pp[1])
                logging.debug(f"Matched with (%f,%f)", p2[0], p2[1])
                z = 0
                # info = "GCP from pixel %f, %f" % (p1[0], p1[1])
                gcp = gdal.GCP(pp[0], pp[1], z, p2[0], p2[1])  # , info, i)
                # print ("GCP     = (" + str(p2[0]) +","+ str(p2[1]) + ") -> (" + str(pp[0]) +","+ str(pp[1]) + ")")
                # gcp_string += ' -gcp '+" ".join([str(p2[0]),str(p2[1]),str(pp[0]), str(pp[1])])
                gcp_list.append(gcp)
        logging.debug("%s : %d GCPs", datetime.datetime.now(), len(gcp_list))

        translate_t = gdal.GCPsToGeoTransform(gcp_list)
        translate_inv_t = gdal.InvGeoTransform(translate_t)
        logging.debug(len(translate_t))
        logging.debug("geotransform = %s", translate_t)
        logging.debug(len(translate_inv_t))
        logging.debug("invgeotransform = %s", translate_inv_t)
        # trans_gcp_list = []
        dst_gcp_list = []
        mapResiduals = 0.0
        geo_residuals = 0.0
        for gcp in gcp_list:
            # Inverse geotransform to get the corresponding pixel
            pix = gdal.ApplyGeoTransform(translate_inv_t, gcp.GCPX, gcp.GCPY)
            logging.debug("GCP = (%d,%d) -> (%d,%d)", gcp.GCPPixel,
                          gcp.GCPLine, gcp.GCPX, gcp.GCPY)
            logging.debug(" => (%d,%d)", pix[0], pix[1])
            map_dX = gcp.GCPPixel - pix[0]
            map_dY = gcp.GCPLine - pix[1]
            map_residual = map_dX * map_dX + map_dY * map_dY
            mapResiduals = mapResiduals + map_residual
            # Apply the transform to get the GCP location in the output SRS
            pp = gdal.ApplyGeoTransform(translate_t, gcp.GCPPixel, gcp.GCPLine)
            z = 0
            out_gcp = gdal.GCP(pp[0], pp[1], z, gcp.GCPPixel, gcp.GCPLine)
            logging.debug("GCP = (%d,%d) -> (%d,%d)", out_gcp.GCPPixel,
                          out_gcp.GCPLine, pp[0], pp[1])
            dX = gcp.GCPX - pp[0]
            dY = gcp.GCPY - pp[1]
            residual = dX * dX + dY * dY
            geo_residuals = geo_residuals + residual
            logging.debug("map residual = %f, %f = %f", map_dX, map_dY,
                          map_residual)
            logging.debug("residual = %f, %f = %f", dX, dY, residual)
            dst_gcp_list.append(out_gcp)

        logging.debug(f"map residuals %s", mapResiduals)
        logging.debug(f"geo residuals %s", geo_residuals)
        return ds.GetProjection(), gcp_list, dst_gcp_list
    else:
        logging.error("Not enough matches are found - %d/%d",
                      len(two_sides_matches), min_matches)
        return None, None, None
Example #29
0
from osgeo import gdal

if len(sys.argv) < 2:
    print("Usage: gcps2wld.py source_file")
    sys.exit(1)

filename = sys.argv[1]
dataset = gdal.Open(filename)
if dataset is None:
    print('Unable to open %s' % filename)
    sys.exit(1)

gcps = dataset.GetGCPs()

if gcps is None or not gcps:
    print('No GCPs found on file ' + filename)
    sys.exit(1)

geotransform = gdal.GCPsToGeoTransform(gcps)

if geotransform is None:
    print('Unable to extract a geotransform.')
    sys.exit(1)

print(geotransform[1])
print(geotransform[4])
print(geotransform[2])
print(geotransform[5])
print(geotransform[0] + 0.5 * geotransform[1] + 0.5 * geotransform[2])
print(geotransform[3] + 0.5 * geotransform[4] + 0.5 * geotransform[5])
Example #30
0
    def modify_src_raster(self):
        'convert to RGB(A) if required'
        #----------------------------

        override_srs = self.options.srs

        src_bands = self.src_ds.RasterCount
        band1 = self.src_ds.GetRasterBand(1)
        if src_bands == 1 and band1.GetColorInterpretation(
        ) == GCI_PaletteIndex:  # source is a paletted raster
            transparency = None
            if self.base_resampling == 'NearestNeighbour' and self.resampling == Image.NEAREST:
                # check if src can be rendered in paletted mode
                color_table = band1.GetColorTable()
                ncolors = color_table.GetCount()
                palette = [
                    color_table.GetColorEntry(i) for i in range(ncolors)
                ]
                r, g, b, a = zip(*palette)
                pil_palette = flatten(zip(
                    r, g, b))  # PIL doesn't support RGBA palettes
                if self.options.dst_nodata is not None:
                    transparency = int(self.options.dst_nodata.split(',')[0])
                elif min(a) == 0:
                    transparency = a.index(0)
                elif ncolors < 256:
                    pil_palette += [0, 0, 0
                                    ]  # the last color index is a transparency
                    transparency = len(pil_palette) / 3 - 1

            ld('transparency', transparency)
            if transparency is not None:  # render in paletted mode
                self.transparency = transparency
                self.palette = pil_palette
                ld('self.palette', self.palette)
            else:  # convert src to rgb VRT

                src_geotr = self.src_ds.GetGeoTransform()
                src_proj = txt2proj4(self.src_ds.GetProjection())
                gcps = self.src_ds.GetGCPs()
                if gcps:
                    ld('src GCPsToGeoTransform', gdal.GCPsToGeoTransform(gcps))

                if not src_proj and gcps:
                    src_proj = txt2proj4(self.src_ds.GetGCPProjection())

                if override_srs is not None:
                    src_proj = txt2proj4(override_srs)
                    override_srs = None

                ld('src_proj', src_proj, 'src geotr', src_geotr)
                assert src_proj, 'The source does not have a spatial reference system assigned'

                if not src_geotr or src_geotr == (0.0, 1.0, 0.0, 0.0, 0.0,
                                                  1.0):
                    geotr_txt = ''
                else:
                    geotr_txt = geotr_templ % src_geotr

                gcplst_txt = ''
                if gcps:
                    gcp_lst = '\n'.join(
                        (gcp_templ %
                         (g.Id, g.GCPPixel, g.GCPLine, g.GCPX, g.GCPY, g.GCPZ)
                         for g in gcps))
                    gcp_proj = txt2proj4(self.src_ds.GetGCPProjection(
                    )) if override_srs is None else src_proj
                    gcplst_txt = gcplst_templ % (gcp_proj, gcp_lst)

                metadata = self.src_ds.GetMetadata()
                ld('metadata', metadata)
                if metadata:
                    mtd_lst = [
                        xml_txt('MDI', metadata[mdkey], 4, key=mdkey)
                        for mdkey in metadata
                    ]
                    meta_txt = meta_templ % '\n'.join(mtd_lst)
                else:
                    meta_txt = ''

                xsize, ysize = (self.src_ds.RasterXSize,
                                self.src_ds.RasterYSize)
                blxsize, blysize = band1.GetBlockSize()

                band_lst = ''.join(
                    (band_templ % {
                        'band': band,
                        'color': color,
                        'src': cgi.escape(self.src_path, quote=True),
                        'srcband': 1,
                        'xsize': xsize,
                        'ysize': ysize,
                        'blxsize': blxsize,
                        'blysize': blysize,
                    } for band, color in ((1, 'Red'), (2, 'Green'), (3,
                                                                     'Blue'))))

                vrt_txt = vrt_templ % {
                    'xsize': xsize,
                    'ysize': ysize,
                    'metadata': meta_txt,
                    'srs': (srs_templ % src_proj) if src_proj else '',
                    'geotr': geotr_txt,
                    'gcp_list': gcplst_txt,
                    'band_list': band_lst,
                }

                src_vrt = os.path.abspath(
                    os.path.join(self.dest,
                                 self.base + '.src.vrt'))  # auxilary VRT file

                self.temp_files.append(src_vrt)
                self.src_path = src_vrt
                with open(src_vrt, 'w') as f:
                    f.write(vrt_txt.encode('utf-8'))

                self.src_ds = gdal.Open(src_vrt, GA_ReadOnly)
                # finished with a paletted raster

        if override_srs is not None:  # src SRS needs to be relpaced
            src_vrt = os.path.join(self.dest,
                                   self.base + '.src.vrt')  # auxilary VRT file
            self.temp_files.append(src_vrt)
            self.src_path = src_vrt

            vrt_drv = gdal.GetDriverByName('VRT')
            self.src_ds = vrt_drv.CreateCopy(src_vrt,
                                             src_ds)  # replace src dataset

            ld('override_srs', override_srs, 'txt2wkt(override_srs)',
               txt2wkt(override_srs))
            self.src_ds.SetProjection(
                txt2wkt(override_srs))  # replace source SRS
            gcps = self.src_ds.GetGCPs()
            if gcps:
                self.src_ds.SetGCPs(gcps, txt2wkt(override_srs))