Example #1
0
def copy_raster_and_add_overviews(filename_src: PathLikeOrStr,
                                  output_filename_template: str,
                                  overview_list: Sequence[int],
                                  overview_alg='bilinear',
                                  create_file_per_ovr: bool = True,
                                  driver_name: str = 'GTiff'):

    files_list = []
    ds_with_ovrs = output_filename_template.format('')
    shutil.copy(filename_src, ds_with_ovrs)
    files_list.append(ds_with_ovrs)

    ds_base = output_filename_template.format(0)
    shutil.copy(filename_src, ds_base)
    files_list.append(ds_base)

    ds = open_ds(ds_with_ovrs, gdal.GA_Update)
    size = (ds.RasterXSize, ds.RasterYSize)
    ds.BuildOverviews(overview_alg, overviewlist=overview_list)

    driver = gdal.GetDriverByName(driver_name)
    all_ovrs = [1]
    all_ovrs.extend(overview_list)
    for ovr_idx, f in enumerate(all_ovrs):
        filename_i = output_filename_template.format(ovr_idx)
        if ovr_idx == 0:
            ds1 = open_ds(filename_i)
        else:
            ds1 = open_ds(ds_with_ovrs, ovr_idx=ovr_idx, ovr_only=True)
            if create_file_per_ovr:
                driver.CreateCopy(filename_i, ds1)
                files_list.append(filename_i)
        assert ds1.RasterXSize == int(size[0] / f) and ds1.RasterYSize == int(
            size[1] / f) and ds1.RasterCount == 1
    return all_ovrs, files_list
Example #2
0
def test_utils_py_1():
    """ test get_ovr_idx, create_flat_raster """
    filename = 'tmp/raster.tif'
    temp_files.append(filename)
    raster_creation.create_flat_raster(filename, overview_list=[2, 4])
    ds = util.open_ds(filename)
    compression = util.get_image_structure_metadata(filename, 'COMPRESSION')
    assert compression == 'DEFLATE'
    ovr_count = util.get_ovr_count(ds) + 1
    assert ovr_count == 3
    pixel_size = util.get_pixel_size(ds)
    assert pixel_size == (10, -10)

    for i in range(-ovr_count, ovr_count):
        assert util.get_ovr_idx(filename,
                                ovr_idx=i) == (i if i >= 0 else ovr_count + i)

    for res, ovr in [(5, 0), (10, 0), (11, 0), (19.99, 0), (20, 1), (20.1, 1),
                     (39, 1), (40, 2), (41, 2), (400, 2)]:
        assert util.get_ovr_idx(filename, ovr_res=res) == ovr
        assert util.get_ovr_idx(filename,
                                float(res)) == ovr  # noqa secret functionality

    # test open_ds with multiple different inputs
    filename2 = 'tmp/raster2.tif'
    temp_files.append(filename2)
    raster_creation.create_flat_raster(filename2)
    ds_list = util.open_ds([ds, filename2])
    assert tuple(util.get_ovr_count(ds) for ds in ds_list) == (2, 0)
    ds_list = None
Example #3
0
def get_color_table_from_raster(
        path_or_ds: PathOrDS) -> Optional[gdal.ColorTable]:
    ds = open_ds(path_or_ds, silent_fail=True)
    if ds is not None:
        ct = ds.GetRasterBand(1).GetRasterColorTable()
        return ct.Clone()
    return None
Example #4
0
    def calc_fwd(self, filename_or_ds, ovr_idx):
        self.ox = np.array(self.ox, dtype=np.float32)
        self.oy = np.array(self.oy, dtype=np.float32)
        abs_oz = np.array(self.oz, dtype=np.float32)
        ds = open_ds(filename_or_ds)
        az = np.array(self.get_grid_azimuth(), dtype=np.float32)
        el = np.array(self.elevation, dtype=np.float32)
        r = np.array(self.max_r, dtype=np.float32) if len(
            self.max_r) == len(el) else np.full_like(el, self.max_r[0])

        a = (90 - az) * M_PI_180
        e = el * M_PI_180
        ground_r = r * np.cos(e)
        self.tmsl = True
        if not self.omsl:
            _pixels, _lines, alts = gdallocationinfo(
                ds,
                band_nums=1,
                x=self.ox,
                y=self.oy,
                srs=LocationInfoSRS.SameAsDS_SRS,
                inline_xy_replacement=False,
                ovr_idx=ovr_idx,
                axis_order=osr.OAMS_TRADITIONAL_GIS_ORDER)
            abs_oz = abs_oz + alts

        earth_d = 6378137.0 * 2
        earth_curvature = (1 - self.refraction_coeff) / earth_d
        self.tz = abs_oz + r * np.sin(
            e) + ground_r * ground_r * earth_curvature
        self.tx = self.ox + np.cos(a) * ground_r
        self.ty = self.oy + np.sin(a) * ground_r
Example #5
0
def gdallocationinfo_util(filename_or_ds: PathOrDS,
                          x: ArrayOrScalarLike,
                          y: ArrayOrScalarLike,
                          open_options: Optional[dict] = None,
                          band_nums: Optional[Sequence[int]] = None,
                          resample_alg=gdalconst.GRIORA_NearestNeighbour,
                          output_mode: Optional[LocationInfoOutput] = None,
                          **kwargs):
    if output_mode is None:
        output_mode = LocationInfoOutput.Quiet
    if output_mode in [LocationInfoOutput.XML, LocationInfoOutput.LifOnly]:
        raise Exception(
            f'Sorry, output mode {output_mode} is not implemented yet. you may use the c++ version.'
        )

    quiet_mode = output_mode == LocationInfoOutput.Quiet
    print_mode = output_mode in \
                 [LocationInfoOutput.ValOnly, LocationInfoOutput.PixelLineVal, LocationInfoOutput.PixelLineValVerbose]
    inline_xy_replacement = not print_mode

    ds = open_ds(filename_or_ds, open_options=open_options)
    band_nums = get_band_nums(ds, band_nums)
    x, y, results = gdallocationinfo(
        filename_or_ds=ds,
        x=x,
        y=y,
        band_nums=band_nums,
        resample_alg=resample_alg,
        inline_xy_replacement=inline_xy_replacement,
        quiet_mode=quiet_mode,
        **kwargs)
    xsize, ysize = ds.RasterXSize, ds.RasterYSize

    is_nearest_neighbour = resample_alg == gdal.GRIORA_NearestNeighbour
    if print_mode:
        if output_mode == LocationInfoOutput.PixelLineValVerbose:
            print('Report:')
        for idx, (pixel, line) in enumerate(zip(x, y)):
            if not quiet_mode and pixel < 0 or pixel >= xsize or line < 0 or line >= ysize:
                print(f'Location {pixel} {line} is off this file!')
            else:
                if is_nearest_neighbour:
                    pixel, line = int(pixel), int(line)
                if output_mode == LocationInfoOutput.PixelLineValVerbose:
                    print(f'  Location: ({pixel}P,{line}L)')
                for bnd_idx, band_num in enumerate(band_nums):
                    val = results[bnd_idx][idx]
                    if output_mode == LocationInfoOutput.ValOnly:
                        print(val)
                    elif output_mode == LocationInfoOutput.PixelLineVal:
                        print(f'{pixel} {line} {val}')
                    elif output_mode == LocationInfoOutput.PixelLineValVerbose:
                        print(f'  Band {band_num}:')
                        print(f'    Value: {val}')

    return results
Example #6
0
def doit(src_filename,
         pct_filename: Optional[ColorTableLike],
         dst_filename: Optional[PathLikeOrStr] = None,
         driver_name: Optional[str] = None):

    # =============================================================================
    # Get the PCT.
    # =============================================================================

    ct = get_color_table(pct_filename)
    if pct_filename is not None and ct is None:
        print('No color table on file ', pct_filename)
        return None, 1

    # =============================================================================
    # Create a MEM clone of the source file.
    # =============================================================================

    src_ds = open_ds(src_filename)

    mem_ds = gdal.GetDriverByName('MEM').CreateCopy('mem', src_ds)

    # =============================================================================
    # Assign the color table in memory.
    # =============================================================================

    mem_ds.GetRasterBand(1).SetRasterColorTable(ct)
    mem_ds.GetRasterBand(1).SetRasterColorInterpretation(gdal.GCI_PaletteIndex)

    # =============================================================================
    # Write the dataset to the output file.
    # =============================================================================

    if not driver_name:
        driver_name = GetOutputDriverFor(dst_filename)

    dst_driver = gdal.GetDriverByName(driver_name)
    if dst_driver is None:
        print('"%s" driver not registered.' % driver_name)
        return None, 1

    if driver_name.upper() == 'MEM':
        out_ds = mem_ds
    else:
        out_ds = dst_driver.CreateCopy(dst_filename or '', mem_ds)

    mem_ds = None
    src_ds = None

    return out_ds, 0
Example #7
0
def test_utils_py_1():
    """ test get_ovr_idx, create_flat_raster """
    filename = 'tmp/raster.tif'
    temp_files.append(filename)
    raster_creation.create_flat_raster(filename, overview_list=[2, 4])
    ds = util.open_ds(filename)
    compression = util.get_image_structure_metadata(filename, 'COMPRESSION')
    assert compression == 'DEFLATE'
    ras_count = util.get_ovr_count(ds) + 1
    assert ras_count == 3
    pixel_size = util.get_pixel_size(ds)
    assert pixel_size == (10, -10)

    for i in range(-ras_count, ras_count):
        assert util.get_ovr_idx(filename,
                                ovr_idx=i) == (i if i >= 0 else ras_count + i)

    for res, ovr in [(5, 0), (10, 0), (11, 0), (19.99, 0), (20, 1), (20.1, 1),
                     (39, 1), (40, 2), (41, 2), (400, 2)]:
        assert util.get_ovr_idx(filename, ovr_res=res) == ovr
        assert util.get_ovr_idx(
            filename, ovr_idx=float(res)) == ovr  # noqa secret functionality
Example #8
0
def gdallocationinfo(
    filename_or_ds: PathOrDS,
    x: ArrayOrScalarLike,
    y: ArrayOrScalarLike,
    srs: CoordinateTransformationOrSRS = None,
    axis_order: Optional[OAMS_AXIS_ORDER] = None,
    open_options: Optional[dict] = None,
    ovr_idx: Optional[int] = None,
    band_nums: Optional[Sequence[int]] = None,
    inline_xy_replacement: bool = False,
    return_ovr_pixel_line: bool = False,
    transform_round_digits: Optional[float] = None,
    allow_xy_outside_extent: bool = True,
    pixel_offset: Real = -0.5,
    line_offset: Real = -0.5,
    resample_alg=gdalconst.GRIORA_NearestNeighbour,
    quiet_mode: bool = True,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    ds = open_ds(filename_or_ds, open_options=open_options)
    filename = filename_or_ds if is_path_like(filename_or_ds) else ''
    if ds is None:
        raise Exception(f'Could not open {filename}.')
    if not isinstance(x, ArrayLike.__args__):
        x = [x]
    if not isinstance(y, ArrayLike.__args__):
        y = [y]
    if len(x) != len(y):
        raise Exception(
            f'len(x)={len(x)} should be the same as len(y)={len(y)}')
    point_count = len(x)

    dtype = np.float64
    if not isinstance(x, np.ndarray) or not isinstance(y, np.ndarray):
        x = np.array(x, dtype=dtype)
        y = np.array(y, dtype=dtype)
        inline_xy_replacement = True

    if srs is None:
        srs = LocationInfoSRS.PixelLine

    # Build Spatial Reference object based on coordinate system, fetched from the opened dataset
    if srs != LocationInfoSRS.PixelLine:
        if srs != LocationInfoSRS.SameAsDS_SRS:
            ds_srs = ds.GetSpatialRef()
            ct = None
            if isinstance(srs, osr.CoordinateTransformation):
                ct = srs
            else:
                if srs == LocationInfoSRS.SameAsDS_SRS_GeogCS:
                    points_srs = ds_srs.CloneGeogCS()
                else:
                    points_srs = get_srs(srs, axis_order=axis_order)
                ct = get_transform(points_srs, ds_srs)
            if ct is not None:
                if not inline_xy_replacement:
                    x = x.copy()
                    y = y.copy()
                    inline_xy_replacement = True
                transform_points(ct, x, y)
                if transform_round_digits is not None:
                    x.round(transform_round_digits, out=x)
                    y.round(transform_round_digits, out=y)

        # Read geotransform matrix and calculate corresponding pixel coordinates
        geotransform = ds.GetGeoTransform()
        inv_geotransform = gdal.InvGeoTransform(geotransform)
        if inv_geotransform is None:
            raise Exception("Failed InvGeoTransform()")

        # can we inline this transformation ?
        x, y = \
            (inv_geotransform[0] + inv_geotransform[1] * x + inv_geotransform[2] * y), \
            (inv_geotransform[3] + inv_geotransform[4] * x + inv_geotransform[5] * y)
        inline_xy_replacement = True

    xsize, ysize = ds.RasterXSize, ds.RasterYSize
    bands = get_bands(ds, band_nums, ovr_idx=ovr_idx)
    ovr_xsize, ovr_ysize = bands[0].XSize, bands[0].YSize
    pixel_fact, line_fact = (ovr_xsize / xsize,
                             ovr_ysize / ysize) if ovr_idx else (1, 1)
    bnd_count = len(bands)

    shape = (bnd_count, point_count)
    np_dtype, np_dtype = GDALTypeCodeAndNumericTypeCodeFromDataSet(ds)
    results = np.empty(shape=shape, dtype=np_dtype)

    check_outside = not quiet_mode or not allow_xy_outside_extent
    if check_outside and (np.any(x < 0) or np.any(x >= xsize) or np.any(y < 0)
                          or np.any(y >= ysize)):
        msg = 'Passed coordinates are not in dataset extent!'
        if not allow_xy_outside_extent:
            raise Exception(msg)
        elif not quiet_mode:
            print(msg)

    if pixel_fact == 1:
        pixels_q = x
    elif return_ovr_pixel_line:
        x *= pixel_fact
        pixels_q = x
    else:
        pixels_q = x * pixel_fact

    if line_fact == 1:
        lines_q = y
    elif return_ovr_pixel_line:
        y *= line_fact
        lines_q = y
    else:
        lines_q = y * line_fact

    buf_xsize = buf_ysize = 1
    buf_type, typecode = GDALTypeCodeAndNumericTypeCodeFromDataSet(ds)
    buf_obj = np.empty([buf_ysize, buf_xsize], dtype=typecode)

    for idx, (pixel, line) in enumerate(zip(pixels_q, lines_q)):
        for bnd_idx, band in enumerate(bands):
            if BandRasterIONumPy(band, 0, pixel - 0.5, line - 0.5, 1, 1,
                                 buf_obj, buf_type, resample_alg, None,
                                 None) == 0:
                results[bnd_idx][idx] = buf_obj[0][0]

    is_scaled, scales, offsets = get_scales_and_offsets(bands)
    if is_scaled:
        for bnd_idx, (scale, offset) in enumerate(zip(scales, offsets)):
            results[bnd_idx] = results[bnd_idx] * scale + offset

    return x, y, results
Example #9
0
def Calc(calc: MaybeSequence[str], outfile: Optional[PathLikeOrStr] = None, NoDataValue: Optional[Number] = None,
         type: Optional[Union[GDALDataType, str]] = None, format: Optional[str] = None,
         creation_options: Optional[Sequence[str]] = None, allBands: str = '', overwrite: bool = False,
         hideNoData: bool = False, projectionCheck: bool = False,
         color_table: Optional[ColorTableLike] = None,
         extent: Optional[Extent] = None, projwin: Optional[Union[Tuple, GeoRectangle]] = None,
         user_namespace: Optional[Dict]=None,
         debug: bool = False, quiet: bool = False, **input_files):

    if debug:
        print(f"gdal_calc.py starting calculation {calc}")

    # Single calc value compatibility
    if isinstance(calc, (list, tuple)):
        calc = calc
    else:
        calc = [calc]
    calc = [c.strip('"') for c in calc]

    creation_options = creation_options or []

    # set up global namespace for eval with all functions of gdal_array, numpy
    global_namespace = {key: getattr(module, key)
                        for module in [gdal_array, numpy] for key in dir(module) if not key.startswith('__')}

    if user_namespace:
        global_namespace.update(user_namespace)

    if not calc:
        raise Exception("No calculation provided.")
    elif not outfile and format.upper() != 'MEM':
        raise Exception("No output file provided.")

    if format is None:
        format = GetOutputDriverFor(outfile)

    if isinstance(extent, GeoRectangle):
        pass
    elif projwin:
        if isinstance(projwin, GeoRectangle):
            extent = projwin
        else:
            extent = GeoRectangle.from_lurd(*projwin)
    elif not extent:
        extent = Extent.IGNORE
    else:
        extent = extent_util.parse_extent(extent)

    compatible_gt_eps = 0.000001
    gt_diff_support = {
        GT.INCOMPATIBLE_OFFSET: extent != Extent.FAIL,
        GT.INCOMPATIBLE_PIXEL_SIZE: False,
        GT.INCOMPATIBLE_ROTATION: False,
        GT.NON_ZERO_ROTATION: False,
    }
    gt_diff_error = {
        GT.INCOMPATIBLE_OFFSET: 'different offset',
        GT.INCOMPATIBLE_PIXEL_SIZE: 'different pixel size',
        GT.INCOMPATIBLE_ROTATION: 'different rotation',
        GT.NON_ZERO_ROTATION: 'non zero rotation',
    }

    ################################################################
    # fetch details of input layers
    ################################################################

    # set up some lists to store data for each band
    myFileNames = []  # input filenames
    myFiles = []  # input DataSets
    myBands = []  # input bands
    myAlphaList = []  # input alpha letter that represents each input file
    myDataType = []  # string representation of the datatype of each input file
    myDataTypeNum = []  # datatype of each input file
    myNDV = []  # nodatavalue for each input file
    DimensionsCheck = None  # dimensions of the output
    Dimensions = []  # Dimensions of input files
    ProjectionCheck = None  # projection of the output
    GeoTransformCheck = None  # GeoTransform of the output
    GeoTransforms = []  # GeoTransform of each input file
    GeoTransformDiffer = False  # True if we have inputs with different GeoTransforms
    myTempFileNames = []  # vrt filename from each input file
    myAlphaFileLists = []  # list of the Alphas which holds a list of inputs

    # loop through input files - checking dimensions
    for alphas, filenames in input_files.items():
        if isinstance(filenames, (list, tuple)):
            # alpha is a list of files
            myAlphaFileLists.append(alphas)
        elif is_path_like(filenames) or isinstance(filenames, gdal.Dataset):
            # alpha is a single filename or a Dataset
            filenames = [filenames]
            alphas = [alphas]
        else:
            # I guess this alphas should be in the global_namespace,
            # It would have been better to pass it as user_namepsace, but I'll accept it anyway
            global_namespace[alphas] = filenames
            continue
        for alpha, filename in zip(alphas * len(filenames), filenames):
            if not alpha.endswith("_band"):
                # check if we have asked for a specific band...
                alpha_band = f"{alpha}_band"
                if alpha_band in input_files:
                    myBand = input_files[alpha_band]
                else:
                    myBand = 1

                myF_is_ds = not is_path_like(filename)
                if myF_is_ds:
                    myFile = filename
                    filename = None
                else:
                    myFile = open_ds(filename, gdal.GA_ReadOnly)
                if not myFile:
                    raise IOError(f"No such file or directory: '{filename}'")

                myFileNames.append(filename)
                myFiles.append(myFile)
                myBands.append(myBand)
                myAlphaList.append(alpha)
                dt = myFile.GetRasterBand(myBand).DataType
                myDataType.append(gdal.GetDataTypeName(dt))
                myDataTypeNum.append(dt)
                myNDV.append(None if hideNoData else myFile.GetRasterBand(myBand).GetNoDataValue())

                # check that the dimensions of each layer are the same
                myFileDimensions = [myFile.RasterXSize, myFile.RasterYSize]
                if DimensionsCheck:
                    if DimensionsCheck != myFileDimensions:
                        GeoTransformDiffer = True
                        if extent in [Extent.IGNORE, Extent.FAIL]:
                            raise Exception(
                                f"Error! Dimensions of file {filename} ({myFileDimensions[0]:d}, "
                                f"{myFileDimensions[1]:d}) are different from other files "
                                f"({DimensionsCheck[0]:d}, {DimensionsCheck[1]:d}).  Cannot proceed")
                else:
                    DimensionsCheck = myFileDimensions

                # check that the Projection of each layer are the same
                myProjection = myFile.GetProjection()
                if ProjectionCheck:
                    if projectionCheck and ProjectionCheck != myProjection:
                        raise Exception(
                            f"Error! Projection of file {filename} {myProjection} "
                            f"are different from other files {ProjectionCheck}.  Cannot proceed")
                else:
                    ProjectionCheck = myProjection

                # check that the GeoTransforms of each layer are the same
                myFileGeoTransform = myFile.GetGeoTransform(can_return_null=True)
                if extent == Extent.IGNORE:
                    GeoTransformCheck = myFileGeoTransform
                else:
                    Dimensions.append(myFileDimensions)
                    GeoTransforms.append(myFileGeoTransform)
                    if not GeoTransformCheck:
                        GeoTransformCheck = myFileGeoTransform
                    else:
                        my_gt_diff = extent_util.gt_diff(GeoTransformCheck, myFileGeoTransform, eps=compatible_gt_eps,
                                                         diff_support=gt_diff_support)
                        if my_gt_diff not in [GT.SAME, GT.ALMOST_SAME]:
                            GeoTransformDiffer = True
                            if my_gt_diff != GT.COMPATIBLE_DIFF:
                                raise Exception(
                                    f"Error! GeoTransform of file {filename} {myFileGeoTransform} is incompatible "
                                    f"({gt_diff_error[my_gt_diff]}), first file GeoTransform is {GeoTransformCheck}. "
                                    f"Cannot proceed")
                if debug:
                    print(
                        f"file {alpha}: {filename}, dimensions: "
                        f"{DimensionsCheck[0]}, {DimensionsCheck[1]}, type: {myDataType[-1]}")

    # process allBands option
    allBandsIndex = None
    allBandsCount = 1
    if allBands:
        if len(calc) > 1:
            raise Exception("Error! --allBands implies a single --calc")
        try:
            allBandsIndex = myAlphaList.index(allBands)
        except ValueError:
            raise Exception(f"Error! allBands option was given but Band {allBands} not found.  Cannot proceed")
        allBandsCount = myFiles[allBandsIndex].RasterCount
        if allBandsCount <= 1:
            allBandsIndex = None
    else:
        allBandsCount = len(calc)

    if extent not in [Extent.IGNORE, Extent.FAIL] and (
        GeoTransformDiffer or isinstance(extent, GeoRectangle)):
        # mixing different GeoTransforms/Extents
        GeoTransformCheck, DimensionsCheck, ExtentCheck = extent_util.calc_geotransform_and_dimensions(
            GeoTransforms, Dimensions, extent)
        if GeoTransformCheck is None:
            raise Exception("Error! The requested extent is empty. Cannot proceed")
        for i in range(len(myFileNames)):
            temp_vrt_filename, temp_vrt_ds = extent_util.make_temp_vrt(myFiles[i], ExtentCheck)
            myTempFileNames.append(temp_vrt_filename)
            myFiles[i] = None  # close original ds
            myFiles[i] = temp_vrt_ds  # replace original ds with vrt_ds

            # update the new precise dimensions and gt from the new ds
            GeoTransformCheck = temp_vrt_ds.GetGeoTransform()
            DimensionsCheck = [temp_vrt_ds.RasterXSize, temp_vrt_ds.RasterYSize]
        temp_vrt_ds = None

    ################################################################
    # set up output file
    ################################################################

    # open output file exists
    if outfile and os.path.isfile(outfile) and not overwrite:
        if allBandsIndex is not None:
            raise Exception("Error! allBands option was given but Output file exists, must use --overwrite option!")
        if len(calc) > 1:
            raise Exception(
                "Error! multiple calc options were given but Output file exists, must use --overwrite option!")
        if debug:
            print(f"Output file {outfile} exists - filling in results into file")

        myOut = open_ds(outfile, gdal.GA_Update)
        if myOut is None:
            error = 'but cannot be opened for update'
        elif [myOut.RasterXSize, myOut.RasterYSize] != DimensionsCheck:
            error = 'but is the wrong size'
        elif ProjectionCheck and ProjectionCheck != myOut.GetProjection():
            error = 'but is the wrong projection'
        elif GeoTransformCheck and GeoTransformCheck != myOut.GetGeoTransform(can_return_null=True):
            error = 'but is the wrong geotransform'
        else:
            error = None
        if error:
            raise Exception(
                f"Error! Output exists, {error}.  Use the --overwrite option "
                f"to automatically overwrite the existing file")

        myOutB = myOut.GetRasterBand(1)
        myOutNDV = myOutB.GetNoDataValue()
        myOutType = myOutB.DataType

    else:
        if outfile:
            # remove existing file and regenerate
            if os.path.isfile(outfile):
                os.remove(outfile)
            # create a new file
            if debug:
                print(f"Generating output file {outfile}")
        else:
            outfile = ''

        # find data type to use
        if not type:
            # use the largest type of the input files
            myOutType = max(myDataTypeNum)
        else:
            myOutType = type
            if isinstance(myOutType, str):
                myOutType = gdal.GetDataTypeByName(myOutType)

        # create file
        myOutDrv = gdal.GetDriverByName(format)
        myOut = myOutDrv.Create(
            os.fspath(outfile), DimensionsCheck[0], DimensionsCheck[1], allBandsCount,
            myOutType, creation_options)

        # set output geo info based on first input layer
        if not GeoTransformCheck:
            GeoTransformCheck = myFiles[0].GetGeoTransform(can_return_null=True)
        if GeoTransformCheck:
            myOut.SetGeoTransform(GeoTransformCheck)

        if not ProjectionCheck:
            ProjectionCheck = myFiles[0].GetProjection()
        if ProjectionCheck:
            myOut.SetProjection(ProjectionCheck)

        if NoDataValue is None:
            myOutNDV = None if hideNoData else DefaultNDVLookup[
                myOutType]  # use the default noDataValue for this datatype
        elif isinstance(NoDataValue, str) and NoDataValue.lower() == 'none':
            myOutNDV = None  # not to set any noDataValue
        else:
            myOutNDV = NoDataValue  # use the given noDataValue

        for i in range(1, allBandsCount + 1):
            myOutB = myOut.GetRasterBand(i)
            if myOutNDV is not None:
                myOutB.SetNoDataValue(myOutNDV)
            if color_table:
                # set color table and color interpretation
                if is_path_like(color_table):
                    color_table = get_color_table(color_table)
                myOutB.SetRasterColorTable(color_table)
                myOutB.SetRasterColorInterpretation(gdal.GCI_PaletteIndex)

            myOutB = None  # write to band

    myOutTypeName = gdal.GetDataTypeName(myOutType)
    if debug:
        print(f"output file: {outfile}, dimensions: {myOut.RasterXSize}, {myOut.RasterYSize}, type: {myOutTypeName}")

    ################################################################
    # find block size to chop grids into bite-sized chunks
    ################################################################

    # use the block size of the first layer to read efficiently
    myBlockSize = myFiles[0].GetRasterBand(myBands[0]).GetBlockSize()
    # find total x and y blocks to be read
    nXBlocks = (int)((DimensionsCheck[0] + myBlockSize[0] - 1) / myBlockSize[0])
    nYBlocks = (int)((DimensionsCheck[1] + myBlockSize[1] - 1) / myBlockSize[1])
    myBufSize = myBlockSize[0] * myBlockSize[1]

    if debug:
        print(f"using blocksize {myBlockSize[0]} x {myBlockSize[1]}")

    # variables for displaying progress
    ProgressCt = -1
    ProgressMk = -1
    ProgressEnd = nXBlocks * nYBlocks * allBandsCount

    ################################################################
    # start looping through each band in allBandsCount
    ################################################################

    for bandNo in range(1, allBandsCount + 1):

        ################################################################
        # start looping through blocks of data
        ################################################################

        # store these numbers in variables that may change later
        nXValid = myBlockSize[0]
        nYValid = myBlockSize[1]

        # loop through X-lines
        for X in range(0, nXBlocks):

            # in case the blocks don't fit perfectly
            # change the block size of the final piece
            if X == nXBlocks - 1:
                nXValid = DimensionsCheck[0] - X * myBlockSize[0]

            # find X offset
            myX = X * myBlockSize[0]

            # reset buffer size for start of Y loop
            nYValid = myBlockSize[1]
            myBufSize = nXValid * nYValid

            # loop through Y lines
            for Y in range(0, nYBlocks):
                ProgressCt += 1
                if 10 * ProgressCt / ProgressEnd % 10 != ProgressMk and not quiet:
                    ProgressMk = 10 * ProgressCt / ProgressEnd % 10
                    from sys import version_info
                    if version_info >= (3, 0, 0):
                        exec('print("%d.." % (10*ProgressMk), end=" ")')
                    else:
                        exec('print 10*ProgressMk, "..",')

                # change the block size of the final piece
                if Y == nYBlocks - 1:
                    nYValid = DimensionsCheck[1] - Y * myBlockSize[1]
                    myBufSize = nXValid * nYValid

                # find Y offset
                myY = Y * myBlockSize[1]

                # create empty buffer to mark where nodata occurs
                myNDVs = None

                # make local namespace for calculation
                local_namespace = {}

                val_lists = defaultdict(list)

                # fetch data for each input layer
                for i, Alpha in enumerate(myAlphaList):

                    # populate lettered arrays with values
                    if allBandsIndex is not None and allBandsIndex == i:
                        myBandNo = bandNo
                    else:
                        myBandNo = myBands[i]
                    myval = gdal_array.BandReadAsArray(myFiles[i].GetRasterBand(myBandNo),
                                                       xoff=myX, yoff=myY,
                                                       win_xsize=nXValid, win_ysize=nYValid)
                    if myval is None:
                        raise Exception(f'Input block reading failed from filename {filename[i]}')

                    # fill in nodata values
                    if myNDV[i] is not None:
                        # myNDVs is a boolean buffer.
                        # a cell equals to 1 if there is NDV in any of the corresponding cells in input raster bands.
                        if myNDVs is None:
                            # this is the first band that has NDV set. we initializes myNDVs to a zero buffer
                            # as we didn't see any NDV value yet.
                            myNDVs = numpy.zeros(myBufSize)
                            myNDVs.shape = (nYValid, nXValid)
                        myNDVs = 1 * numpy.logical_or(myNDVs == 1, myval == myNDV[i])

                    # add an array of values for this block to the eval namespace
                    if Alpha in myAlphaFileLists:
                        val_lists[Alpha].append(myval)
                    else:
                        local_namespace[Alpha] = myval
                    myval = None

                for lst in myAlphaFileLists:
                    local_namespace[lst] = val_lists[lst]

                # try the calculation on the array blocks
                this_calc = calc[bandNo - 1 if len(calc) > 1 else 0]
                try:
                    myResult = eval(this_calc, global_namespace, local_namespace)
                except:
                    print(f"evaluation of calculation {this_calc} failed")
                    raise

                # Propagate nodata values (set nodata cells to zero
                # then add nodata value to these cells).
                if myNDVs is not None and myOutNDV is not None:
                    myResult = ((1 * (myNDVs == 0)) * myResult) + (myOutNDV * myNDVs)
                elif not isinstance(myResult, numpy.ndarray):
                    myResult = numpy.ones((nYValid, nXValid)) * myResult

                # write data block to the output file
                myOutB = myOut.GetRasterBand(bandNo)
                if gdal_array.BandWriteArray(myOutB, myResult, xoff=myX, yoff=myY) != 0:
                    raise Exception('Block writing failed')
                myOutB = None  # write to band

    # remove temp files
    for idx, tempFile in enumerate(myTempFileNames):
        myFiles[idx] = None
        os.remove(tempFile)

    gdal.ErrorReset()
    myOut.FlushCache()
    if gdal.GetLastErrorMsg() != '':
        raise Exception('Dataset writing failed')

    if not quiet:
        print("100 - Done")

    return myOut
Example #10
0
def gdal2xyz(
        srcfile: PathOrDS,
        dstfile: PathLikeOrStr = None,
        srcwin: Optional[Sequence[int]] = None,
        skip: Union[int, Sequence[int]] = 1,
        band_nums: Optional[Sequence[int]] = None,
        delim: str = ' ',
        skip_nodata: bool = False,
        src_nodata: Optional[Union[Sequence, Number]] = None,
        dst_nodata: Optional[Union[Sequence, Number]] = None,
        return_np_arrays: bool = False,
        pre_allocate_np_arrays: bool = True,
        progress_callback: OptionalProgressCallback = ...) -> Optional[Tuple]:
    """
    translates a raster file (or dataset) into xyz format

    skip - how many rows/cols to skip each iteration
    srcwin (xoff, yoff, xsize, ysize) - Selects a subwindow from the source image for copying based on pixel/line location.
    band_nums - selected input bands to process, None to process all.
    delim - the delimiter to use between values in a line
    skip_nodata - Exclude the output lines with nodata value (as determined by srcnodata)
    src_nodata - The nodata value of the dataset (for skipping or replacing)
        default (`None`) - Use the dataset NoDataValue;
        `Sequence`/`Number` - use the given nodata value (per band or per dataset).
    dst_nodata - Replace source nodata with a given nodata. Has an effect only if not setting `-skipnodata`
        default(`None`) - use srcnodata, no replacement;
        `Sequence`/`Number` - replace the `srcnodata` with the given nodata value (per band or per dataset).
    srcfile - The source dataset filename or dataset object
    dstfile - The output dataset filename; for dstfile=None - if return_np_arrays=False then output will be printed to stdout
    return_np_arrays - return numpy arrays of the result, otherwise returns None
    pre_allocate_np_arrays - pre-allocated result arrays.
        Should be faster unless skip_nodata and the input is very sparse thus most data points will be skipped.
    progress_callback - progress callback function. use None for quiet or Ellipsis for using the default callback
    """

    result = None

    progress_callback = get_progress_callback(progress_callback)

    # Open source file.
    ds = open_ds(srcfile)
    if ds is None:
        raise Exception(f'Could not open {srcfile}.')

    bands = get_bands(ds, band_nums)
    band_count = len(bands)

    gt = ds.GetGeoTransform()

    # Collect information on all the source files.
    if srcwin is None:
        srcwin = (0, 0, ds.RasterXSize, ds.RasterYSize)

    dt, np_dt = GDALTypeCodeAndNumericTypeCodeFromDataSet(ds)

    # Open the output file.
    if dstfile is not None:
        dst_fh = open(dstfile, 'wt')
    elif return_np_arrays:
        dst_fh = None
    else:
        dst_fh = sys.stdout

    if dst_fh:
        if dt == gdal.GDT_Int32 or dt == gdal.GDT_UInt32:
            band_format = (("%d" + delim) * len(bands)).rstrip(delim) + '\n'
        else:
            band_format = (("%g" + delim) * len(bands)).rstrip(delim) + '\n'

        # Setup an appropriate print format.
        if abs(gt[0]) < 180 and abs(gt[3]) < 180 \
            and abs(ds.RasterXSize * gt[1]) < 180 \
            and abs(ds.RasterYSize * gt[5]) < 180:
            frmt = '%.10g' + delim + '%.10g' + delim + '%s'
        else:
            frmt = '%.3f' + delim + '%.3f' + delim + '%s'

    if isinstance(src_nodata, Number):
        src_nodata = [src_nodata] * band_count
    elif src_nodata is None:
        src_nodata = list(band.GetNoDataValue() for band in bands)
    if None in src_nodata:
        src_nodata = None
    if src_nodata is not None:
        src_nodata = np.asarray(src_nodata, dtype=np_dt)

    if isinstance(dst_nodata, Number):
        dst_nodata = [dst_nodata] * band_count
    if (dst_nodata is None) or (None in dst_nodata) or (src_nodata is None):
        dst_nodata = None
    if dst_nodata is not None:
        dst_nodata = np.asarray(dst_nodata, dtype=np_dt)

    skip_nodata = skip_nodata and (src_nodata is not None)
    replace_nodata = (not skip_nodata) and (dst_nodata is not None)
    process_nodata = skip_nodata or replace_nodata

    if isinstance(skip, Sequence):
        x_skip, y_skip = skip
    else:
        x_skip = y_skip = skip

    x_off, y_off, x_size, y_size = srcwin
    bands_count = len(bands)

    nXBlocks = (x_size - x_off) // x_skip
    nYBlocks = (y_size - y_off) // y_skip
    progress_end = nXBlocks * nYBlocks
    progress_curr = 0
    progress_prev = -1
    progress_parts = 100

    if return_np_arrays:
        size = progress_end if pre_allocate_np_arrays else 0
        all_geo_x = np.empty(size)
        all_geo_y = np.empty(size)
        all_data = np.empty((size, band_count), dtype=np_dt)

    # Loop emitting data.
    idx = 0
    for y in range(y_off, y_off + y_size, y_skip):

        size = bands_count if pre_allocate_np_arrays else 0
        data = np.empty((size, x_size),
                        dtype=np_dt)  # dims: (bands_count, x_size)
        for i_bnd, band in enumerate(bands):
            band_data = band.ReadAsArray(x_off, y, x_size,
                                         1)  # read one band line
            if pre_allocate_np_arrays:
                data[i_bnd] = band_data[0]
            else:
                data = np.append(data, band_data, axis=0)

        for x_i in range(0, x_size, x_skip):

            progress_curr += 1
            if progress_callback:
                progress_frac = progress_curr / progress_end
                progress = int(progress_frac * progress_parts)
                if progress > progress_prev:
                    progress_prev = progress
                    progress_callback(progress_frac)

            x_i_data = data[:, x_i]  # single pixel, dims: (bands)
            if process_nodata and np.array_equal(src_nodata, x_i_data):
                if skip_nodata:
                    continue
                elif replace_nodata:
                    x_i_data = dst_nodata

            x = x_i + x_off

            geo_x = gt[0] + (x + 0.5) * gt[1] + (y + 0.5) * gt[2]
            geo_y = gt[3] + (x + 0.5) * gt[4] + (y + 0.5) * gt[5]

            if dst_fh:
                band_str = band_format % tuple(x_i_data)
                line = frmt % (float(geo_x), float(geo_y), band_str)
                dst_fh.write(line)
            if return_np_arrays:
                if pre_allocate_np_arrays:
                    all_geo_x[idx] = geo_x
                    all_geo_y[idx] = geo_y
                    all_data[idx] = x_i_data
                else:
                    all_geo_x = np.append(all_geo_x, geo_x)
                    all_geo_y = np.append(all_geo_y, geo_y)
                    all_data = np.append(all_data, [x_i_data], axis=0)
            idx += 1

    if return_np_arrays:
        nodata = None if skip_nodata else dst_nodata if replace_nodata else src_nodata
        if idx != progress_curr:
            all_geo_x = all_geo_x[:idx]
            all_geo_y = all_geo_y[:idx]
            all_data = all_data[:idx, :]
        result = all_geo_x, all_geo_y, all_data.transpose(), nodata

    return result
Example #11
0
def pct2rgb(src_filename: PathLikeOrStr, pct_filename: Optional[PathLikeOrStr], dst_filename: PathLikeOrStr,
            band_number: int = 1, out_bands: int = 3, driver_name: Optional[str] = None):
    # Open source file
    src_ds = open_ds(src_filename)
    if src_ds is None:
        raise Exception(f'Unable to open {src_filename} ')

    src_band = src_ds.GetRasterBand(band_number)

    # ----------------------------------------------------------------------------
    # Ensure we recognise the driver.

    if driver_name is None:
        driver_name = GetOutputDriverFor(dst_filename)

    dst_driver = gdal.GetDriverByName(driver_name)
    if dst_driver is None:
        raise Exception(f'"{driver_name}" driver not registered.')

    # ----------------------------------------------------------------------------
    # Build color table.

    if pct_filename is not None:
        pal = get_color_palette(pct_filename)
        if pal.has_percents():
            min_val = src_band.GetMinimum()
            max_val = src_band.GetMinimum()
            pal.apply_percent(min_val, max_val)
        ct = get_color_table(pal)
    else:
        ct = src_band.GetRasterColorTable()

    ct_size = ct.GetCount()
    lookup = [np.arange(ct_size),
              np.arange(ct_size),
              np.arange(ct_size),
              np.ones(ct_size) * 255]

    if ct is not None:
        for i in range(ct_size):
            entry = ct.GetColorEntry(i)
            for c in range(4):
                lookup[c][i] = entry[c]

    # ----------------------------------------------------------------------------
    # Create the working file.

    if driver_name.lower() == 'gtiff':
        tif_filename = dst_filename
    else:
        tif_filename = 'temp.tif'

    gtiff_driver = gdal.GetDriverByName('GTiff')

    tif_ds = gtiff_driver.Create(tif_filename, src_ds.RasterXSize, src_ds.RasterYSize, out_bands)

    # ----------------------------------------------------------------------------
    # We should copy projection information and so forth at this point.

    tif_ds.SetProjection(src_ds.GetProjection())
    tif_ds.SetGeoTransform(src_ds.GetGeoTransform())
    if src_ds.GetGCPCount() > 0:
        tif_ds.SetGCPs(src_ds.GetGCPs(), src_ds.GetGCPProjection())

    # ----------------------------------------------------------------------------
    # Do the processing one scanline at a time.

    progress(0.0)
    for iY in range(src_ds.RasterYSize):
        src_data = src_band.ReadAsArray(0, iY, src_ds.RasterXSize, 1)

        for iBand in range(out_bands):
            band_lookup = lookup[iBand]

            dst_data = np.take(band_lookup, src_data)
            tif_ds.GetRasterBand(iBand + 1).WriteArray(dst_data, 0, iY)

        progress((iY + 1.0) / src_ds.RasterYSize)

    # ----------------------------------------------------------------------------
    # Translate intermediate file to output format if desired format is not TIFF.

    if tif_filename == dst_filename:
        dst_ds = tif_ds
    else:
        dst_ds = dst_driver.CreateCopy(dst_filename or '', tif_ds)
        tif_ds = None
        gtiff_driver.Delete(tif_filename)

    return dst_ds
Example #12
0
def test_gdallocationinfo_py_7():
    filename_template = 'tmp/byte{}.tif'
    overview_list = [2]
    overview_list, file_list = copy_raster_and_add_overviews(
        filename_src='../gcore/data/byte.tif',
        output_filename_template=filename_template,
        overview_list=overview_list)
    temp_files.extend(file_list)

    ds = open_ds(filename_template.format(''))
    ds_srs = ds.GetSpatialRef()
    gt = ds.GetGeoTransform()
    ovr_fact = 1
    pix_offset = 0
    p0 = list(i * ovr_fact + pix_offset for i in range(0, 3))
    l0 = list(i * ovr_fact + pix_offset for i in range(0, 3))
    p0, l0 = zip(*product(p0, l0))
    x0 = list(gt[0] + pixel * gt[1] for pixel in p0)
    y0 = list(gt[3] + line * gt[5] for line in l0)

    dtype = np.float64
    p0 = np.array(p0, dtype=dtype)
    l0 = np.array(l0, dtype=dtype)
    x0 = np.array(x0, dtype=dtype)
    y0 = np.array(y0, dtype=dtype)

    expected_results = [[(0.0, 0.0, 107), (0.0, 1.0, 115), (0.0, 2.0, 115),
                         (1.0, 0.0, 123), (1.0, 1.0, 132), (1.0, 2.0, 132),
                         (2.0, 0.0, 132), (2.0, 1.0, 107), (2.0, 2.0, 140)],
                        [(0.0, 0.0, 120), (0.0, 0.5, 120), (0.0, 1.0, 132),
                         (0.5, 0.0, 120), (0.5, 0.5, 120), (0.5, 1.0, 132),
                         (1.0, 0.0, 124), (1.0, 0.5, 124), (1.0, 1.0, 129)]]
    expected_results = np.array(expected_results, dtype=dtype)

    do_print = False
    for ovr_idx, f in enumerate(overview_list):
        for srs in [
                LocationInfoSRS.PixelLine, LocationInfoSRS.SameAsDS_SRS, 4326
        ]:
            if srs == LocationInfoSRS.PixelLine:
                x = p0
                y = l0
            elif srs == LocationInfoSRS.SameAsDS_SRS:
                x = x0
                y = y0
            else:
                points_srs = get_srs(srs,
                                     axis_order=osr.OAMS_TRADITIONAL_GIS_ORDER)
                ct = get_transform(ds_srs, points_srs)
                x = x0.copy()
                y = y0.copy()
                transform_points(ct, x, y)
            pixels, lines, results = gdallocationinfo.gdallocationinfo(
                filename_or_ds=ds,
                ovr_idx=ovr_idx,
                x=x,
                y=y,
                transform_round_digits=2,
                return_ovr_pixel_line=True,
                srs=srs,
                axis_order=osr.OAMS_TRADITIONAL_GIS_ORDER)

            actual = list(zip(pixels, lines, *results))
            actual = np.array(actual, dtype=dtype)
            expected = expected_results[ovr_idx]
            if do_print:
                print(actual)
                print(expected)
                outputs = list(zip(x, y, pixels, lines, *results))
                print(
                    f'ovr: {ovr_idx}, srs: {srs}, x/y/pixel/line/result: {outputs}'
                )
            assert_allclose(expected, actual, rtol=1e-4, atol=1e-3)
Example #13
0
def rgb2pct(src_filename: PathLikeOrStr,
            pct_filename: Optional[PathLikeOrStr] = None,
            dst_filename: Optional[PathLikeOrStr] = None,
            color_count: int = 256,
            driver_name: Optional[str] = None):
    # Open source file
    src_ds = open_ds(src_filename)
    if src_ds is None:
        raise Exception(f'Unable to open {src_filename}')

    if src_ds.RasterCount < 3:
        raise Exception(
            f'{src_filename} has {src_ds.RasterCount} band(s), need 3 for inputs red, green and blue.'
        )

    # Ensure we recognise the driver.
    if not driver_name:
        driver_name = GetOutputDriverFor(dst_filename)

    dst_driver = gdal.GetDriverByName(driver_name)
    if dst_driver is None:
        raise Exception(f'"{driver_name}" driver not registered.')

    # Generate palette
    if pct_filename is None:
        ct = gdal.ColorTable()
        err = gdal.ComputeMedianCutPCT(src_ds.GetRasterBand(1),
                                       src_ds.GetRasterBand(2),
                                       src_ds.GetRasterBand(3),
                                       color_count,
                                       ct,
                                       callback=gdal.TermProgress_nocb)
    else:
        ct = get_color_table(pct_filename)

    # Create the working file.  We have to use TIFF since there are few formats
    # that allow setting the color table after creation.

    if driver_name.lower() == 'gtiff':
        tif_filename = dst_filename
    else:
        import tempfile
        tif_filedesc, tif_filename = tempfile.mkstemp(suffix='.tif')

    gtiff_driver = gdal.GetDriverByName('GTiff')

    tif_ds = gtiff_driver.Create(tif_filename, src_ds.RasterXSize,
                                 src_ds.RasterYSize, 1)

    tif_ds.GetRasterBand(1).SetRasterColorTable(ct)

    # ----------------------------------------------------------------------------
    # We should copy projection information and so forth at this point.

    tif_ds.SetProjection(src_ds.GetProjection())
    tif_ds.SetGeoTransform(src_ds.GetGeoTransform())
    if src_ds.GetGCPCount() > 0:
        tif_ds.SetGCPs(src_ds.GetGCPs(), src_ds.GetGCPProjection())

    # ----------------------------------------------------------------------------
    # Actually transfer and dither the data.

    err = gdal.DitherRGB2PCT(src_ds.GetRasterBand(1),
                             src_ds.GetRasterBand(2),
                             src_ds.GetRasterBand(3),
                             tif_ds.GetRasterBand(1),
                             ct,
                             callback=gdal.TermProgress_nocb)
    if err != gdal.CE_None:
        raise Exception('DitherRGB2PCT failed')

    if tif_filename == dst_filename:
        dst_ds = tif_ds
    else:
        dst_ds = dst_driver.CreateCopy(dst_filename or '', tif_ds)
        tif_ds = None
        os.close(tif_filedesc)
        gtiff_driver.Delete(tif_filename)

    return dst_ds
Example #14
0
def gdallocationinfo(
    filename_or_ds: PathOrDS,
    x: NumpyCompatibleArrayOrReal,
    y: NumpyCompatibleArrayOrReal,
    gis_order: bool = False,
    open_options: Optional[dict] = None,
    ovr_idx: Optional[int] = None,
    band_nums: Optional[Sequence[int]] = None,
    srs: CoordinateTransformationOrSRS = None,
    inline_xy_replacement: bool = True,
    quiet_mode: bool = True,
    allow_xy_outside_extent: bool = True,
    pixel_offset: Real = -0.5,
    line_offset: Real = -0.5,
    resample_alg=gdalconst.GRIORA_NearestNeighbour
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:

    ds = open_ds(filename_or_ds, open_options=open_options)
    filename = filename_or_ds if is_path_like(filename_or_ds) else ''
    if ds is None:
        raise Exception(f'Could not open {filename}.')
    if not isinstance(x, NumpyCompatibleArray.__args__):
        x = [x]
    if not isinstance(y, NumpyCompatibleArray.__args__):
        y = [y]
    if len(x) != len(y):
        raise Exception(
            f'len(x)={len(x)} should be the same as len(y)={len(y)}')
    point_count = len(x)

    if not isinstance(x, np.ndarray):
        x = np.ndarray(x)
    if not isinstance(y, np.ndarray):
        y = np.ndarray(y)

    if srs is None:
        srs = LocationInfoSRS.PixelLine

    # Build Spatial Reference object based on coordinate system, fetched from the opened dataset
    if srs != LocationInfoSRS.PixelLine:
        if srs != LocationInfoSRS.SameAsDS_SRS:
            ds_srs = ds.GetSpatialRef()
            ct = None
            if isinstance(srs, osr.CoordinateTransformation):
                ct = srs
            else:
                if srs == LocationInfoSRS.SameAsDS_SRS_GeogCS:
                    points_srs = ds_srs.CloneGeogCS()
                else:
                    points_srs = get_srs(srs, gis_order=gis_order)
                ct = get_transform(points_srs, ds_srs)
            x, y, _z = transform_points(ct, x, y)

        # Read geotransform matrix and calculate corresponding pixel coordinates
        geomatrix = ds.GetGeoTransform()
        inv_geometrix = gdal.InvGeoTransform(geomatrix)
        if inv_geometrix is None:
            raise Exception("Failed InvGeoTransform()")

        x, y = \
            (inv_geometrix[0] + inv_geometrix[1] * x + inv_geometrix[2] * y), \
            (inv_geometrix[3] + inv_geometrix[4] * x + inv_geometrix[5] * y)

    xsize, ysize = ds.RasterXSize, ds.RasterYSize
    bands = get_bands(ds, band_nums, ovr_idx=ovr_idx)
    ovr_xsize, ovr_ysize = bands[0].XSize, bands[0].YSize
    pixel_fact, line_fact = (ovr_xsize / xsize,
                             ovr_ysize / ysize) if ovr_idx else (1, 1)
    bnd_count = len(bands)

    shape = (bnd_count, point_count)
    np_dtype, np_dtype = GDALTypeCodeAndNumericTypeCodeFromDataSet(ds)
    results = np.empty(shape=shape, dtype=np_dtype)

    check_outside = not quiet_mode or not allow_xy_outside_extent
    if check_outside and (np.any(x < 0) or np.any(x >= xsize) or np.any(y < 0)
                          or np.any(y >= ysize)):
        msg = 'Passed coordinates are not in dataset extent!'
        if not allow_xy_outside_extent:
            raise Exception(msg)
        elif not quiet_mode:
            print(msg)

    pixels = np.clip(x * pixel_fact + pixel_offset,
                     0,
                     ovr_xsize - 1,
                     out=x if inline_xy_replacement else None)
    lines = np.clip(y * line_fact + line_offset,
                    0,
                    ovr_ysize - 1,
                    out=y if inline_xy_replacement else None)

    for idx, (pixel, line) in enumerate(zip(pixels, lines)):
        for bnd_idx, band in enumerate(bands):
            val = band.ReadAsArray(pixel,
                                   line,
                                   1,
                                   1,
                                   resample_alg=resample_alg)
            val = val[0][0]
            results[bnd_idx][idx] = val

    is_scaled, scales, offsets = get_scales_and_offsets(bands)
    if is_scaled:
        for bnd_idx, scale, offset in enumerate(zip(scales, offsets)):
            results[bnd_idx] = results[bnd_idx] * scale + offset

    return pixels, lines, results
Example #15
0
def test_min_max(data, name, min, max, approx_ok):
    ds = util.open_ds(test_py_scripts.get_data_path(data) + name)
    min_max = util.get_raster_min_max(ds, approx_ok=approx_ok)
    assert min_max == (min, max)