def test_rsquared(): ii = ozm.rsquared(TM1, TM2) # Test for regression: npt.assert_almost_equal(ii, np.array([[[ 0.41738295, 0.5686638 , 0.66632678, 0.66796424], [ 0.55782746, 0.52997752, 0.65248008, 0.79295422]], [[ 0.49519897, 0.52195252, 0.70362685, 0.62545745], [ 0.43410031, 0.56910023, 0.76395852, 0.73071651]], [[ 0.50371373, 0.56810418, 0.53169063, 0.60985997], [ 0.53667339, 0.69261167, 0.70018453, 0.63229423]]]))
help='Bvals file (FSL format)') parser.add_argument('out_file', action='store', metavar='File', help='Output file name (.nii.gz)') parser.add_argument('--mask_file', action='store', metavar='File', help='Mask file (only the voxels within the binary mask will be analyzed (.nii.gz; default: analyze all) ', default=None) params = parser.parse_args() if __name__ == "__main__": Model1 = dti.TensorModel(params.dwi_file1, params.bvecs_file1, params.bvals_file1, mask=params.mask_file, params_file='temp') Model2 = dti.TensorModel(params.dwi_file2, params.bvecs_file2, params.bvals_file2, mask=params.mask_file, params_file='temp') # Do it and save: nib.Nifti1Image(ana.rsquared(Model1, Model2), Model1.affine).to_filename(params.out_file)
metavar='File', help='Output file name (.nii.gz)') parser.add_argument( '--mask_file', action='store', metavar='File', help= 'Mask file (only the voxels within the binary mask will be analyzed (.nii.gz; default: analyze all) ', default=None) params = parser.parse_args() if __name__ == "__main__": Model1 = dti.TensorModel(params.dwi_file1, params.bvecs_file1, params.bvals_file1, mask=params.mask_file, params_file='temp') Model2 = dti.TensorModel(params.dwi_file2, params.bvecs_file2, params.bvals_file2, mask=params.mask_file, params_file='temp') # Do it and save: nib.Nifti1Image(ana.rsquared(Model1, Model2), Model1.affine).to_filename(params.out_file)