def qsub_cmd_gen(template, job_name, i, sid, fODF, im, data_path, cmd_file_path=cmd_file_path, python_path=python_path, bashcmd=bashcmd, mem=25): reload(template) template = sge.getsourcelines(template)[0] # Name the job and generate the parameters for each job if job_name[0:2] != "im": params_dict = dict(i=i, sid=sid, fODF=fODF, im=im, data_path=data_path) name = '%s_%s_%s%s'%(job_name,fODF,shorthand_im,i) else: params_dict = dict(i=i, sid=sid, im=im, data_path=data_path) name = '%s_%s%s'%(job_name,shorthand_im,i) code = sge.add_params(template,params_dict) cmd_file = os.path.join(cmd_file_path, '%s.py'%name) print("Generating: %s"%cmd_file) sge.py_cmd(ssh, code, file_name=cmd_file, python=python_path) cmd_file = os.path.join(cmd_file_path, '%s.py'%name) batch_sge.append(sge.qsub_cmd( '%s %s'%(bashcmd, cmd_file), name, mem_usage=mem))
""" This is a wrapper for creating sge commands for parallel computation of model parameters for SFM models from many subjects. """ import os import nibabel as ni import numpy as np import osmosis.io as oio from osmosis.parallel import sge import osmosis.parallel.kfold_xval_precision_template as mb_template reload(mb_template) template = sge.getsourcelines(mb_template)[0] ssh = sge.SSH(hostname='proclus.stanford.edu', username='******', port=22) batch_sge = [] for i in np.arange(65): params_dict = dict(i=i) code = sge.add_params(template, params_dict) name = 'kfold_xval_sph_cc_m%s' % (i) cmd_file = '/home/klchan13/pycmd/%s.py' % name print("Generating: %s" % cmd_file) sge.py_cmd(ssh, code, file_name=cmd_file, python='/home/klchan13/anaconda/bin/python')
""" This is a wrapper for creating sge commands for parallel computation of model parameters for SFM models from many subjects. """ import os import nibabel as ni import numpy as np import osmosis.io as oio from osmosis.parallel import sge import osmosis.parallel.mb_predict_template_smm as mb_template reload(mb_template) template = sge.getsourcelines(mb_template)[0] ssh = sge.SSH(hostname='proclus.stanford.edu',username='******', port=22) batch_sge = [] for i in range(65): params_dict = dict(i=i) code = sge.add_params(template,params_dict) name = 'multi_bi_exp_rs%s'%(i) cmd_file = '/home/klchan13/pycmd/%s.py'%name print("Generating: %s"%cmd_file) sge.py_cmd(ssh, code, file_name=cmd_file,
7. Once that's done, you should be able to run: python ssd_reassmble Which will generate the parameter files. Use these. """ import os import nibabel as ni import numpy as np import osmosis.io as oio from osmosis.parallel import sge import osmosis.parallel.ssd_template as ssd_template reload(ssd_template) template = sge.getsourcelines(ssd_template)[0] alphas = [0.0001, 0.0005, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05] l1_ratios = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] data_path = '/hsgs/u/arokem/tmp/' ssh = sge.SSH(hostname='proclus.stanford.edu', username='******', port=22) batch_sge = [] for subject in ['FP']: #,'HT'] subject_path = os.path.join(oio.data_path, subject) wm_mask_file = os.path.join(subject_path, '%s_wm_mask.nii.gz' % subject) wm_nifti = ni.load(wm_mask_file) wm_data = wm_nifti.get_data() n_wm_vox = np.sum(wm_data)
7. Once that's done, you should be able to run: python ssd_reassmble Which will generate the parameter files. Use these. """ import os import nibabel as ni import numpy as np import osmosis.io as oio from osmosis.parallel import sge import osmosis.parallel.ssd_template as ssd_template reload(ssd_template) template = sge.getsourcelines(ssd_template)[0] alphas = [0.0001, 0.0005, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05] l1_ratios = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] data_path = '/hsgs/u/arokem/tmp/' ssh = sge.SSH(hostname='proclus.stanford.edu',username='******', port=22) batch_sge = [] for subject in ['FP']: #,'HT'] subject_path = os.path.join(oio.data_path, subject) wm_mask_file = os.path.join(subject_path, '%s_wm_mask.nii.gz'%subject) wm_nifti = ni.load(wm_mask_file) wm_data = wm_nifti.get_data() n_wm_vox = np.sum(wm_data)