Example #1
0
 def iterate(self, f, search_area):
     x_new = generate_vector_in_sphere(self.x, self.radius)
     x_new = bound_vector(x_new, search_area)
     f_x_new = f(x_new)
     if f_x_new < self.f_x:
         self.x = x_new
         self.f_x = f_x_new
Example #2
0
 def _move_stars(self, f, search_area):
     black_hole = self.stars[self.black_hole_id]
     self.stars = [
         s + np.random.rand() * (black_hole - s)
         for i, s in enumerate(self.stars) if i != self.black_hole_id
     ]
     self.stars = [bound_vector(s, search_area)
                   for s in self.stars] + [black_hole]
     self._calculate_quality_levels(f)
Example #3
0
    def iterate(self, f, search_area):
        center_of_mass = self._get_center_of_mass()

        self.points = [center_of_mass + self._generate_delta(x) for x in self.points]
        self.points = [bound_vector(x, search_area) for x in self.points]
        self.points.append(center_of_mass)
        self._calculate_values(f)

        self.iteration_number += 1
Example #4
0
    def iterate(self, f, search_area):
        gradient = approx_fprime(self.x, f, epsilon=self.eps)
        gradient_length = np.linalg.norm(gradient)
        if gradient_length > 0:
            gradient /= gradient_length

        x_new = self.x - np.random.uniform(0.0, self.radius) * gradient
        x_new = bound_vector(x_new, search_area)
        f_x_new = f(x_new)
        if f_x_new < self.f_x:
            self.x = x_new
            self.f_x = f_x_new
Example #5
0
def test_bound_vector_1():
    v = np.array([1, 2, 3])
    bounds = np.array([[-5, 5] * len(v)])
    npt.assert_equal(v, bound_vector(v, bounds))
Example #6
0
def test_bound_vector_N(_):
    search_area = np.array([[-10, 10], [-10, 10], [-10, 10]])
    bounds = np.array([[-5, 5], [-5, 5], [-5, 5]])
    vector = generate_vector_in_area(search_area)
    vector = bound_vector(vector, bounds)
    assert ((bounds[:, 0] <= vector) & (vector <= bounds[:, 1])).all()
Example #7
0
def test_bound_vector_3():
    v = np.array([5, -5, 0])
    bounds = np.array([[-2, 2] * len(v)])
    npt.assert_equal(np.array([2, -2, 0]), bound_vector(v, bounds))
Example #8
0
def test_bound_vector_2():
    v = np.array([1, 2, 3])
    bounds = np.array([[-2, 2] * len(v)])
    npt.assert_equal(np.array([1, 2, 2]), bound_vector(v, bounds))