def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bert_model", default='bert-base-uncased', type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument( '--task', type=str, default=None, required=True, help="Task code in {hotpot_open, hotpot_distractor, squad, nq}") # Other parameters parser.add_argument( "--max_seq_length", default=378, type=int, help= "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=1, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=5, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam. (def: 5e-5)") parser.add_argument("--num_train_epochs", default=5.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument('--local_rank', default=-1, type=int) # RNN graph retriever-specific parameters parser.add_argument("--example_limit", default=None, type=int) parser.add_argument("--max_para_num", default=10, type=int) parser.add_argument( "--neg_chunk", default=8, type=int, help="The chunk size of negative examples during training (to " "reduce GPU memory consumption with negative sampling)") parser.add_argument( "--eval_chunk", default=100000, type=int, help= "The chunk size of evaluation examples (to reduce RAM consumption during evaluation)" ) parser.add_argument( "--split_chunk", default=300, type=int, help= "The chunk size of BERT encoding during inference (to reduce GPU memory consumption)" ) parser.add_argument('--train_file_path', type=str, default=None, help="File path to the training data") parser.add_argument('--dev_file_path', type=str, default=None, help="File path to the eval data") parser.add_argument('--beam', type=int, default=1, help="Beam size") parser.add_argument('--min_select_num', type=int, default=1, help="Minimum number of selected paragraphs") parser.add_argument('--max_select_num', type=int, default=3, help="Maximum number of selected paragraphs") parser.add_argument( "--use_redundant", action='store_true', help="Whether to use simulated seqs (only for training)") parser.add_argument( "--use_multiple_redundant", action='store_true', help="Whether to use multiple simulated seqs (only for training)") parser.add_argument( '--max_redundant_num', type=int, default=100000, help= "Whether to limit the number of the initial TF-IDF pool (only for open-domain eval)" ) parser.add_argument( "--no_links", action='store_true', help= "Whether to omit any links (or in other words, only use TF-IDF-based paragraphs)" ) parser.add_argument("--pruning_by_links", action='store_true', help="Whether to do pruning by links (and top 1)") parser.add_argument( "--expand_links", action='store_true', help= "Whether to expand links with paragraphs in the same article (for NQ)") parser.add_argument( '--tfidf_limit', type=int, default=None, help= "Whether to limit the number of the initial TF-IDF pool (only for open-domain eval)" ) parser.add_argument("--pred_file", default=None, type=str, help="File name to write paragraph selection results") parser.add_argument("--tagme", action='store_true', help="Whether to use tagme at inference") parser.add_argument( '--topk', type=int, default=2, help="Whether to use how many paragraphs from the previous steps") parser.add_argument( "--model_suffix", default=None, type=str, help="Suffix to load a model file ('pytorch_model_' + suffix +'.bin')") parser.add_argument("--db_save_path", default=None, type=str, help="File path to DB") parser.add_argument("--fp16", default=False, action='store_true') parser.add_argument("--fp16_opt_level", default="O1", type=str) parser.add_argument("--do_label", default=False, action='store_true', help="For pre-processing features only.") parser.add_argument("--oss_cache_dir", default=None, type=str) parser.add_argument("--cache_dir", default=None, type=str) parser.add_argument("--dist", default=False, action='store_true', help='use distributed training.') parser.add_argument("--save_steps", default=5000, type=int) parser.add_argument("--resume", default=None, type=int) parser.add_argument("--oss_pretrain", default=None, type=str) parser.add_argument("--model_version", default='v1', type=str) parser.add_argument("--disable_rnn_layer_norm", default=False, action='store_true') args = parser.parse_args() if args.dist: dist.init_process_group(backend='nccl') print(f"local rank: {args.local_rank}") print(f"global rank: {dist.get_rank()}") print(f"world size: {dist.get_world_size()}") if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of synchronizing nodes/GPUs dist.init_process_group(backend='nccl') if args.dist: global_rank = dist.get_rank() world_size = dist.get_world_size() if world_size > 1: args.local_rank = global_rank if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if args.train_file_path is not None: do_train = True if os.path.exists(args.output_dir) and os.listdir(args.output_dir): raise ValueError( "Output directory ({}) already exists and is not empty.". format(args.output_dir)) if args.local_rank in [-1, 0]: os.makedirs(args.output_dir, exist_ok=True) elif args.dev_file_path is not None: do_train = False else: raise ValueError( 'One of train_file_path: {} or dev_file_path: {} must be non-None'. format(args.train_file_path, args.dev_file_path)) processor = DataProcessor() # Configurations of the graph retriever graph_retriever_config = GraphRetrieverConfig( example_limit=args.example_limit, task=args.task, max_seq_length=args.max_seq_length, max_select_num=args.max_select_num, max_para_num=args.max_para_num, tfidf_limit=args.tfidf_limit, train_file_path=args.train_file_path, use_redundant=args.use_redundant, use_multiple_redundant=args.use_multiple_redundant, max_redundant_num=args.max_redundant_num, dev_file_path=args.dev_file_path, beam=args.beam, min_select_num=args.min_select_num, no_links=args.no_links, pruning_by_links=args.pruning_by_links, expand_links=args.expand_links, eval_chunk=args.eval_chunk, tagme=args.tagme, topk=args.topk, db_save_path=args.db_save_path, disable_rnn_layer_norm=args.disable_rnn_layer_norm) logger.info(graph_retriever_config) logger.info(args) tokenizer = AutoTokenizer.from_pretrained(args.bert_model) if args.model_version == 'roberta': from modeling_graph_retriever_roberta import RobertaForGraphRetriever elif args.model_version == 'v3': from modeling_graph_retriever_roberta import RobertaForGraphRetrieverIterV3 as RobertaForGraphRetriever else: raise RuntimeError() ############################## # Training # ############################## if do_train: _model_state_dict = None if args.oss_pretrain is not None: _model_state_dict = torch.load(load_pretrain_from_oss( args.oss_pretrain), map_location='cpu') logger.info(f"Loaded pretrained model from {args.oss_pretrain}") if args.resume is not None: _model_state_dict = torch.load(load_buffer_from_oss( os.path.join(args.oss_cache_dir, f"pytorch_model_{args.resume}.bin")), map_location='cpu') model = RobertaForGraphRetriever.from_pretrained( args.bert_model, graph_retriever_config=graph_retriever_config, state_dict=_model_state_dict) model.to(device) global_step = 0 POSITIVE = 1.0 NEGATIVE = 0.0 _cache_file_name = f"cache_roberta_train_{args.max_seq_length}_{args.max_para_num}" _examples_cache_file_name = f"examples_{_cache_file_name}" _features_cache_file_name = f"features_{_cache_file_name}" # Load training examples logger.info(f"Loading training examples and features.") try: if args.cache_dir is not None and os.path.exists( os.path.join(args.cache_dir, _features_cache_file_name)): logger.info( f"Loading pre-processed features from {os.path.join(args.cache_dir, _features_cache_file_name)}" ) train_features = torch.load( os.path.join(args.cache_dir, _features_cache_file_name)) else: # train_examples = torch.load(load_buffer_from_oss(os.path.join(oss_features_cache_dir, # _examples_cache_file_name))) train_features = torch.load( load_buffer_from_oss( os.path.join(oss_features_cache_dir, _features_cache_file_name))) logger.info( f"Pre-processed features are loaded from oss: " f"{os.path.join(oss_features_cache_dir, _features_cache_file_name)}" ) except: train_examples = processor.get_train_examples( graph_retriever_config) train_features = convert_examples_to_features( train_examples, args.max_seq_length, args.max_para_num, graph_retriever_config, tokenizer, train=True) logger.info( f"Saving pre-processed features into oss: {oss_features_cache_dir}" ) torch_save_to_oss( train_examples, os.path.join(oss_features_cache_dir, _examples_cache_file_name)) torch_save_to_oss( train_features, os.path.join(oss_features_cache_dir, _features_cache_file_name)) if args.do_label: logger.info("Finished.") return # len(train_examples) and len(train_features) can be different, depending on the redundant setting num_train_steps = int( len(train_features) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight', 'layer_norm'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] t_total = num_train_steps if args.local_rank != -1: t_total = t_total // dist.get_world_size() optimizer = AdamW(optimizer_grouped_parameters, betas=(0.9, 0.98), lr=args.learning_rate) scheduler = get_linear_schedule_with_warmup( optimizer, int(t_total * args.warmup_proportion), t_total) logger.info(optimizer) if args.fp16: from apex import amp amp.register_half_function(torch, "einsum") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) if args.local_rank != -1: if args.fp16_opt_level == 'O2': try: import apex model = apex.parallel.DistributedDataParallel( model, delay_allreduce=True) except ImportError: model = torch.nn.parallel.DistributedDataParallel( model, find_unused_parameters=True) else: model = torch.nn.parallel.DistributedDataParallel( model, find_unused_parameters=True) if n_gpu > 1: model = torch.nn.DataParallel(model) if args.resume is not None: _amp_state_dict = os.path.join(args.oss_cache_dir, f"amp_{args.resume}.bin") _optimizer_state_dict = os.path.join( args.oss_cache_dir, f"optimizer_{args.resume}.pt") _scheduler_state_dict = os.path.join( args.oss_cache_dir, f"scheduler_{args.resume}.pt") amp.load_state_dict( torch.load(load_buffer_from_oss(_amp_state_dict))) optimizer.load_state_dict( torch.load(load_buffer_from_oss(_optimizer_state_dict))) scheduler.load_state_dict( torch.load(load_buffer_from_oss(_scheduler_state_dict))) logger.info(f"Loaded resumed state dict of step {args.resume}") logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_features)) logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (dist.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) model.train() epc = 0 # test if args.local_rank in [-1, 0]: if args.fp16: amp_file = os.path.join(args.oss_cache_dir, f"amp_{global_step}.bin") torch_save_to_oss(amp.state_dict(), amp_file) optimizer_file = os.path.join(args.oss_cache_dir, f"optimizer_{global_step}.pt") torch_save_to_oss(optimizer.state_dict(), optimizer_file) scheduler_file = os.path.join(args.oss_cache_dir, f"scheduler_{global_step}.pt") torch_save_to_oss(scheduler.state_dict(), scheduler_file) tr_loss = 0 for _ in range(int(args.num_train_epochs)): logger.info('Epoch ' + str(epc + 1)) TOTAL_NUM = len(train_features) train_start_index = 0 CHUNK_NUM = 8 train_chunk = TOTAL_NUM // CHUNK_NUM chunk_index = 0 random.shuffle(train_features) save_retry = False while train_start_index < TOTAL_NUM: train_end_index = min(train_start_index + train_chunk - 1, TOTAL_NUM - 1) chunk_len = train_end_index - train_start_index + 1 if args.resume is not None and global_step < args.resume: _chunk_steps = int( math.ceil(chunk_len * 1.0 / args.train_batch_size / (1 if args.local_rank == -1 else dist.get_world_size()))) _chunk_steps = _chunk_steps // args.gradient_accumulation_steps if global_step + _chunk_steps <= args.resume: global_step += _chunk_steps train_start_index = train_end_index + 1 continue train_features_ = train_features[ train_start_index:train_start_index + chunk_len] all_input_ids = torch.tensor( [f.input_ids for f in train_features_], dtype=torch.long) all_input_masks = torch.tensor( [f.input_masks for f in train_features_], dtype=torch.long) all_segment_ids = torch.tensor( [f.segment_ids for f in train_features_], dtype=torch.long) all_output_masks = torch.tensor( [f.output_masks for f in train_features_], dtype=torch.float) all_num_paragraphs = torch.tensor( [f.num_paragraphs for f in train_features_], dtype=torch.long) all_num_steps = torch.tensor( [f.num_steps for f in train_features_], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_masks, all_segment_ids, all_output_masks, all_num_paragraphs, all_num_steps) if args.local_rank != -1: train_sampler = torch.utils.data.DistributedSampler( train_data) else: train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size, pin_memory=True, num_workers=4) if args.local_rank != -1: train_dataloader.sampler.set_epoch(epc) logger.info('Examples from ' + str(train_start_index) + ' to ' + str(train_end_index)) for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): if args.resume is not None and global_step < args.resume: if (step + 1) % args.gradient_accumulation_steps == 0: global_step += 1 continue input_masks = batch[1] batch_max_len = input_masks.sum(dim=2).max().item() num_paragraphs = batch[4] batch_max_para_num = num_paragraphs.max().item() num_steps = batch[5] batch_max_steps = num_steps.max().item() # output_masks_cpu = (batch[3])[:, :batch_max_steps, :batch_max_para_num + 1] batch = tuple(t.to(device) for t in batch) input_ids, input_masks, segment_ids, output_masks, _, _ = batch B = input_ids.size(0) input_ids = input_ids[:, :batch_max_para_num, : batch_max_len] input_masks = input_masks[:, :batch_max_para_num, : batch_max_len] segment_ids = segment_ids[:, :batch_max_para_num, : batch_max_len] output_masks = output_masks[:, :batch_max_steps, : batch_max_para_num + 1] # 1 for EOE target = torch.zeros(output_masks.size()).fill_( NEGATIVE) # (B, NUM_STEPS, |P|+1) <- 1 for EOE for i in range(B): output_masks[i, :num_steps[i], -1] = 1.0 # for EOE for j in range(num_steps[i].item() - 1): target[i, j, j].fill_(POSITIVE) target[i, num_steps[i] - 1, -1].fill_(POSITIVE) target = target.to(device) neg_start = batch_max_steps - 1 while neg_start < batch_max_para_num: neg_end = min(neg_start + args.neg_chunk - 1, batch_max_para_num - 1) neg_len = (neg_end - neg_start + 1) input_ids_ = torch.cat( (input_ids[:, :batch_max_steps - 1, :], input_ids[:, neg_start:neg_start + neg_len, :]), dim=1) input_masks_ = torch.cat( (input_masks[:, :batch_max_steps - 1, :], input_masks[:, neg_start:neg_start + neg_len, :]), dim=1) segment_ids_ = torch.cat( (segment_ids[:, :batch_max_steps - 1, :], segment_ids[:, neg_start:neg_start + neg_len, :]), dim=1) output_masks_ = torch.cat( (output_masks[:, :, :batch_max_steps - 1], output_masks[:, :, neg_start:neg_start + neg_len], output_masks[:, :, batch_max_para_num: batch_max_para_num + 1]), dim=2) target_ = torch.cat( (target[:, :, :batch_max_steps - 1], target[:, :, neg_start:neg_start + neg_len], target[:, :, batch_max_para_num:batch_max_para_num + 1]), dim=2) if neg_start != batch_max_steps - 1: output_masks_[:, :, :batch_max_steps - 1] = 0.0 output_masks_[:, :, -1] = 0.0 loss = model(input_ids_, segment_ids_, input_masks_, output_masks_, target_, batch_max_steps) if n_gpu > 1: loss = loss.mean( ) # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() neg_start = neg_end + 1 # del input_ids_ # del input_masks_ # del segment_ids_ # del output_masks_ # del target_ if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), 1.0) else: torch.nn.utils.clip_grad_norm_( model.parameters(), 1.0) optimizer.step() scheduler.step() # optimizer.zero_grad() model.zero_grad() global_step += 1 if global_step % 50 == 0: _cur_steps = global_step if args.resume is None else global_step - args.resume logger.info( f"Training loss: {tr_loss / _cur_steps}\t" f"Learning rate: {scheduler.get_lr()[0]}\t" f"Global step: {global_step}") if global_step % args.save_steps == 0: if args.local_rank in [-1, 0]: model_to_save = model.module if hasattr( model, 'module') else model output_model_file = os.path.join( args.oss_cache_dir, f"pytorch_model_{global_step}.bin") torch_save_to_oss(model_to_save.state_dict(), output_model_file) _suffix = "" if args.local_rank == -1 else f"_{args.local_rank}" if args.fp16: amp_file = os.path.join( args.oss_cache_dir, f"amp_{global_step}{_suffix}.bin") torch_save_to_oss(amp.state_dict(), amp_file) optimizer_file = os.path.join( args.oss_cache_dir, f"optimizer_{global_step}{_suffix}.pt") torch_save_to_oss(optimizer.state_dict(), optimizer_file) scheduler_file = os.path.join( args.oss_cache_dir, f"scheduler_{global_step}{_suffix}.pt") torch_save_to_oss(scheduler.state_dict(), scheduler_file) logger.info( f"checkpoint of step {global_step} is saved to oss." ) # del input_ids # del input_masks # del segment_ids # del output_masks # del target # del batch chunk_index += 1 train_start_index = train_end_index + 1 # Save the model at the half of the epoch if (chunk_index == CHUNK_NUM // 2 or save_retry) and args.local_rank in [-1, 0]: status = save(model, args.output_dir, str(epc + 0.5)) save_retry = (not status) del train_features_ del all_input_ids del all_input_masks del all_segment_ids del all_output_masks del all_num_paragraphs del all_num_steps del train_data del train_sampler del train_dataloader gc.collect() # Save the model at the end of the epoch if args.local_rank in [-1, 0]: save(model, args.output_dir, str(epc + 1)) # model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self # output_model_file = os.path.join(args.oss_cache_dir, "pytorch_model_" + str(epc + 1) + ".bin") # torch_save_to_oss(model_to_save.state_dict(), output_model_file) epc += 1 if do_train: return ############################## # Evaluation # ############################## assert args.model_suffix is not None if graph_retriever_config.db_save_path is not None: import sys sys.path.append('../') from pipeline.tfidf_retriever import TfidfRetriever tfidf_retriever = TfidfRetriever(graph_retriever_config.db_save_path, None) else: tfidf_retriever = None if args.oss_cache_dir is not None: file_name = 'pytorch_model_' + args.model_suffix + '.bin' model_state_dict = torch.load( load_buffer_from_oss(os.path.join(args.oss_cache_dir, file_name))) else: model_state_dict = load(args.output_dir, args.model_suffix) model = RobertaForGraphRetriever.from_pretrained( args.bert_model, state_dict=model_state_dict, graph_retriever_config=graph_retriever_config) model.to(device) model.eval() if args.pred_file is not None: pred_output = [] eval_examples = processor.get_dev_examples(graph_retriever_config) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) TOTAL_NUM = len(eval_examples) eval_start_index = 0 while eval_start_index < TOTAL_NUM: eval_end_index = min( eval_start_index + graph_retriever_config.eval_chunk - 1, TOTAL_NUM - 1) chunk_len = eval_end_index - eval_start_index + 1 eval_features = convert_examples_to_features( eval_examples[eval_start_index:eval_start_index + chunk_len], args.max_seq_length, args.max_para_num, graph_retriever_config, tokenizer) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_masks = torch.tensor([f.input_masks for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_output_masks = torch.tensor( [f.output_masks for f in eval_features], dtype=torch.float) all_num_paragraphs = torch.tensor( [f.num_paragraphs for f in eval_features], dtype=torch.long) all_num_steps = torch.tensor([f.num_steps for f in eval_features], dtype=torch.long) all_ex_indices = torch.tensor([f.ex_index for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_masks, all_segment_ids, all_output_masks, all_num_paragraphs, all_num_steps, all_ex_indices) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) for input_ids, input_masks, segment_ids, output_masks, num_paragraphs, num_steps, ex_indices in tqdm( eval_dataloader, desc="Evaluating"): batch_max_len = input_masks.sum(dim=2).max().item() batch_max_para_num = num_paragraphs.max().item() batch_max_steps = num_steps.max().item() input_ids = input_ids[:, :batch_max_para_num, :batch_max_len] input_masks = input_masks[:, :batch_max_para_num, :batch_max_len] segment_ids = segment_ids[:, :batch_max_para_num, :batch_max_len] output_masks = output_masks[:, :batch_max_para_num + 2, :batch_max_para_num + 1] output_masks[:, 1:, -1] = 1.0 # Ignore EOE in the first step input_ids = input_ids.to(device) input_masks = input_masks.to(device) segment_ids = segment_ids.to(device) output_masks = output_masks.to(device) examples = [ eval_examples[eval_start_index + ex_indices[i].item()] for i in range(input_ids.size(0)) ] with torch.no_grad(): pred, prob, topk_pred, topk_prob = model.beam_search( input_ids, segment_ids, input_masks, examples=examples, tokenizer=tokenizer, retriever=tfidf_retriever, split_chunk=args.split_chunk) for i in range(len(pred)): e = examples[i] titles = [e.title_order[p] for p in pred[i]] # Output predictions to a file if args.pred_file is not None: pred_output.append({}) pred_output[-1]['q_id'] = e.guid pred_output[-1]['titles'] = titles pred_output[-1]['probs'] = [] for prob_ in prob[i]: entry = {'EOE': prob_[-1]} for j in range(len(e.title_order)): entry[e.title_order[j]] = prob_[j] pred_output[-1]['probs'].append(entry) topk_titles = [[e.title_order[p] for p in topk_pred[i][j]] for j in range(len(topk_pred[i]))] pred_output[-1]['topk_titles'] = topk_titles topk_probs = [] for k in range(len(topk_prob[i])): topk_probs.append([]) for prob_ in topk_prob[i][k]: entry = {'EOE': prob_[-1]} for j in range(len(e.title_order)): entry[e.title_order[j]] = prob_[j] topk_probs[-1].append(entry) pred_output[-1]['topk_probs'] = topk_probs # Output the selected paragraphs context = {} for ts in topk_titles: for t in ts: context[t] = e.all_paras[t] pred_output[-1]['context'] = context eval_start_index = eval_end_index + 1 del eval_features del all_input_ids del all_input_masks del all_segment_ids del all_output_masks del all_num_paragraphs del all_num_steps del all_ex_indices del eval_data if args.pred_file is not None: json.dump(pred_output, open(args.pred_file, 'w'))
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model checkpoints and predictions will be written." ) # Optimizer parameters parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--adam_betas", default="(0.9, 0.999)", type=str) parser.add_argument("--no_bias_correction", default=False, action='store_true') # Other parameters parser.add_argument("--train_file", default=None, type=str, help="SQuAD-format json file for training.") parser.add_argument("--predict_file", default=None, type=str, help="SQuAD-format json file for evaluation.") parser.add_argument( "--max_seq_length", default=384, type=int, help= "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ) parser.add_argument( "--doc_stride", default=128, type=int, help= "When splitting up a long document into chunks, how much stride to take between chunks." ) parser.add_argument( "--max_query_length", default=64, type=int, help= "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_label", action='store_true') parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% " "of training.") parser.add_argument( "--n_best_size", default=20, type=int, help= "The total number of n-best predictions to generate in the nbest_predictions.json " "output file.") parser.add_argument( "--max_answer_length", default=30, type=int, help= "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.") parser.add_argument( "--verbose_logging", action='store_true', help= "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument( "--do_lower_case", default=False, action='store_true', help= "Whether to lower case the input text. True for uncased models, False for cased models." ) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--fp16_opt_level', default='O1', type=str) parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument( '--version_2_with_negative', action='store_true', help= 'If true, the SQuAD examples contain some that do not have an answer.') parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help= "If null_score - best_non_null is greater than the threshold predict null." ) parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") parser.add_argument( '--no_masking', action='store_true', help='If true, we do not mask the span loss for no-answer examples.') parser.add_argument( '--skip_negatives', action='store_true', help= 'If true, we skip negative examples during training; this is mainly for ablation.' ) # For Natural Questions parser.add_argument( '--max_answer_len', type=int, default=1000000, help= "maximum length of answer tokens (might be set to 5 for Natural Questions!)" ) # balance the two losses. parser.add_argument( '--lambda_scale', type=float, default=1.0, help= "If you would like to change the two losses, please change the lambda scale." ) # Save checkpoints more parser.add_argument( '--save_gran', type=str, default="10,3", help='"10,5" means saving a checkpoint every 1/10 of the total updates,' 'but start saving from the 5th attempt') parser.add_argument('--oss_cache_dir', default=None, type=str) parser.add_argument('--cache_dir', default=None, type=str) parser.add_argument('--dist', default=False, action='store_true') args = parser.parse_args() print(args) if args.dist: dist.init_process_group(backend='nccl') print(f"local rank: {args.local_rank}") print(f"global rank: {dist.get_rank()}") print(f"world size: {dist.get_world_size()}") if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of # synchronizing nodes/GPUs dist.init_process_group(backend='nccl') if args.dist: global_rank = dist.get_rank() world_size = dist.get_world_size() if world_size > 1: args.local_rank = global_rank logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_predict: raise ValueError( "At least one of `do_train` or `do_predict` must be True.") if args.do_train: if not args.train_file: raise ValueError( "If `do_train` is True, then `train_file` must be specified.") if args.do_predict: if not args.predict_file: raise ValueError( "If `do_predict` is True, then `predict_file` must be specified." ) if os.path.exists(args.output_dir) and os.listdir( args.output_dir) and args.do_train: raise ValueError( "Output directory () already exists and is not empty.") if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Prepare model and tokenizer tokenizer = AutoTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) model = IterBertForQuestionAnsweringConfidence.from_pretrained( args.bert_model, num_labels=4, no_masking=args.no_masking, lambda_scale=args.lambda_scale) model.to(device) train_examples = None train_features = None num_train_optimization_steps = None if args.do_train: cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}_{4}'.format( model.base_model_prefix, str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length), tokenizer.do_lower_case) cached_train_features_file_name = cached_train_features_file.split( '/')[-1] _oss_feature_save_path = os.path.join(oss_features_cache_dir, cached_train_features_file_name) try: if args.cache_dir is not None and os.path.exists( os.path.join(args.cache_dir, cached_train_features_file_name)): logger.info( f"Loading pre-processed features from {os.path.join(args.cache_dir, cached_train_features_file_name)}" ) train_features = torch.load( os.path.join(args.cache_dir, cached_train_features_file_name)) else: logger.info( f"Loading pre-processed features from oss: {_oss_feature_save_path}" ) train_features = torch.load( load_buffer_from_oss(_oss_feature_save_path)) except: train_examples = read_squad_examples( input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative, max_answer_len=args.max_answer_len, skip_negatives=args.skip_negatives) train_features = convert_examples_to_features_yes_no( examples=train_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=True) if args.local_rank in [-1, 0]: torch_save_to_oss(train_features, _oss_feature_save_path) logger.info( f"Saving train features into oss: {_oss_feature_save_path}" ) num_train_optimization_steps = int( len(train_features) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs if args.do_label: logger.info("finished.") return if args.do_train: # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight', 'layer_norm'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] t_total = num_train_optimization_steps if args.local_rank != -1: t_total = t_total // dist.get_world_size() optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, betas=eval(args.adam_betas), eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, int(t_total * args.warmup_proportion), num_train_optimization_steps) if args.fp16: from apex import amp if args.fp16_opt_level == 'O1': amp.register_half_function(torch, "einsum") if args.loss_scale == 0: model, optimizer = amp.initialize( model, optimizer, opt_level=args.fp16_opt_level) else: model, optimizer = amp.initialize( model, optimizer, opt_level=args.fp16_opt_level, loss_scale=args.loss_scale) if args.local_rank != -1: if args.fp16_opt_level == 'O2': try: import apex model = apex.parallel.DistributedDataParallel( model, delay_allreduce=True) except ImportError: model = torch.nn.parallel.DistributedDataParallel( model, find_unused_parameters=True) else: model = torch.nn.parallel.DistributedDataParallel( model, find_unused_parameters=True) if n_gpu > 1: model = torch.nn.DataParallel(model) global_step = 0 logger.info("***** Running training *****") if train_examples: logger.info(" Num orig examples = %d", len(train_examples)) logger.info(" Num split examples = %d", len(train_features)) logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (dist.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) all_start_positions = torch.tensor( [f.start_position for f in train_features], dtype=torch.long) all_end_positions = torch.tensor( [f.end_position for f in train_features], dtype=torch.long) all_switches = torch.tensor([f.switch for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions, all_switches) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size, pin_memory=True, num_workers=4) if args.save_gran is not None: save_chunk, save_start = args.save_gran.split(',') save_chunk = t_total // int(save_chunk) save_start = int(save_start) model.train() tr_loss = 0 for _epc in trange(int(args.num_train_epochs), desc="Epoch"): if args.local_rank != -1: train_dataloader.sampler.set_epoch(_epc) for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): if n_gpu == 1: # multi-gpu does scattering it-self batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, start_positions, end_positions, switches = batch loss = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, start_positions=start_positions, end_positions=end_positions, switch_list=switches) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() optimizer.zero_grad() global_step += 1 if global_step % 50 == 0: logger.info(f"Training loss: {tr_loss / global_step}\t" f"Learning rate: {scheduler.get_lr()[0]}\t" f"Global step: {global_step}") if args.save_gran is not None and args.local_rank in [ -1, 0 ]: if (global_step % save_chunk == 0) and ( global_step // save_chunk >= save_start): logger.info('Saving a checkpoint....') output_dir_per_epoch = os.path.join( args.output_dir, str(global_step) + 'steps') os.makedirs(output_dir_per_epoch) # Save a trained model, configuration and tokenizer model_to_save = model.module if hasattr( model, 'module' ) else model # Only save the model it-self if args.oss_cache_dir is not None: _oss_model_save_path = os.path.join( args.oss_cache_dir, f"{global_step}steps") torch_save_to_oss( model_to_save.state_dict(), _oss_model_save_path + "/pytorch_model.bin") model_to_save.save_pretrained(output_dir_per_epoch) tokenizer.save_pretrained(output_dir_per_epoch) logger.info('Done') if args.do_train and (args.local_rank == -1 or dist.get_rank() == 0): # Save a trained model, configuration and tokenizer model_to_save = model.module if hasattr( model, 'module') else model # Only save the model it-self model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) torch_save_to_oss( model_to_save.state_dict(), os.path.join(args.oss_cache_dir, "pytorch_model.bin")) # Load a trained model and vocabulary that you have fine-tuned # model = IterBertForQuestionAnsweringConfidence.from_pretrained( # args.output_dir, num_labels=4, no_masking=args.no_masking) tokenizer = AutoTokenizer.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) if args.do_train is False and args.do_predict is True: model = IterBertForQuestionAnsweringConfidence.from_pretrained( args.output_dir, num_labels=4, no_masking=args.no_masking) tokenizer = AutoTokenizer.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) elif args.do_train is True and args.do_predict is True: model = IterBertForQuestionAnsweringConfidence.from_pretrained( args.output_dir, num_labels=4, no_masking=args.no_masking) tokenizer = AutoTokenizer.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) else: model = IterBertForQuestionAnsweringConfidence.from_pretrained( args.bert_model, num_labels=4, no_masking=args.no_masking, lambda_scale=args.lambda_scale) model.to(device) if args.do_predict and (args.local_rank == -1 or dist.get_rank() == 0): eval_examples = read_squad_examples( input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative, max_answer_len=args.max_answer_length, skip_negatives=args.skip_negatives) eval_features = convert_examples_to_features_yes_no( examples=eval_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=False) logger.info("***** Running predictions *****") logger.info(" Num orig examples = %d", len(eval_examples)) logger.info(" Num split examples = %d", len(eval_features)) logger.info(" Batch size = %d", args.predict_batch_size) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size) model.eval() all_results = [] logger.info("Start evaluating") for input_ids, input_mask, segment_ids, example_indices in tqdm( eval_dataloader, desc="Evaluating", disable=args.local_rank not in [-1, 0]): if len(all_results) % 1000 == 0: logger.info("Processing example: %d" % (len(all_results))) input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) with torch.no_grad(): batch_start_logits, batch_end_logits, batch_switch_logits = model( input_ids, segment_ids, input_mask) for i, example_index in enumerate(example_indices): start_logits = batch_start_logits[i].detach().cpu().tolist() end_logits = batch_end_logits[i].detach().cpu().tolist() switch_logits = batch_switch_logits[i].detach().cpu().tolist() eval_feature = eval_features[example_index.item()] unique_id = int(eval_feature.unique_id) all_results.append( RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits, switch_logits=switch_logits)) output_prediction_file = os.path.join(args.output_dir, "predictions.json") output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json") write_predictions_yes_no_no_empty_answer( eval_examples, eval_features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, args.verbose_logging, args.version_2_with_negative, args.null_score_diff_threshold, args.no_masking)