def test_gengauss_v2(): logger.info('Test GenGaussV2_pdf: Generalized Gaussian function V2') model_gauss_gv2 = Models.Fit1D(signal=Models.GenGaussV2_pdf( name='Gv2', mass=mass, mean=signal_gauss.mean), background=Models.Bkg_pdf('BkgGGV2', mass=mass, power=0)) model_gauss_gv2.signal.kappa.fix(0) with rooSilent(): result, frame = model_gauss_gv2.fitTo(dataset0) model_gauss_gv2.signal.mean.release() model_gauss_gv2.s.setVal(5000) model_gauss_gv2.b.setVal(500) result, frame = model_gauss_gv2.fitTo(dataset0) ##model_gauss_gv2.signal.kappa.release() model_gauss_gv2.s.setVal(5000) model_gauss_gv2.b.setVal(500) result, frame = model_gauss_gv2.fitTo(dataset0) result, frame = model_gauss_gv2.fitTo(dataset0) model_gauss_gv2.s.setVal(5000) model_gauss_gv2.b.setVal(500) result, frame = model_gauss_gv2.fitTo(dataset0) if 0 != result.status() or 3 != result.covQual(): logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % (result.status(), result.covQual())) print result else: logger.info('Signal & Background are: %-28s & %-28s ' % (result('S')[0], result('B')[0])) models.add(model_gauss_gv2)
def test_gengauss_v2(): logger.info('Test GenGaussV2_pdf: Generalized Gaussian function V2') model_gauss_gv2 = Models.Fit1D(signal=Models.GenGaussV2_pdf( name='Gv2', xvar=mass, mean=signal_gauss.mean), background=Models.Bkg_pdf('BkgGGV2', xvar=mass, power=0), S=S, B=B) model_gauss_gv2.signal.kappa.fix(0) with rooSilent(): result, frame = model_gauss_gv2.fitTo(dataset0) model_gauss_gv2.signal.mean.release() model_gauss_gv2.S.setVal(5000) model_gauss_gv2.B.setVal(500) result, frame = model_gauss_gv2.fitTo(dataset0) ##model_gauss_gv2.signal.kappa.release() model_gauss_gv2.S.setVal(5000) model_gauss_gv2.B.setVal(500) result, frame = model_gauss_gv2.fitTo(dataset0) result, frame = model_gauss_gv2.fitTo(dataset0) model_gauss_gv2.S.setVal(5000) model_gauss_gv2.B.setVal(500) result, frame = model_gauss_gv2.fitTo(dataset0) model_gauss_gv2.draw(dataset0) if 0 != result.status() or 3 != result.covQual(): logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % (result.status(), result.covQual())) logger.info('generalized Gaussian(v2) function\n%s' % result.table(prefix="# ")) models.add(model_gauss_gv2)