def test_qgauss(): logger.info('Test QGaussian_pdf: q-Gaussian') model_qgauss = Models.Fit1D(signal=Models.QGaussian_pdf( name='qG', xvar=mass, q=(1, 0.7, 1.2), mean=signal_gauss.mean, scale=signal_gauss.sigma), background=Models.Bkg_pdf('BkgQG', xvar=mass, power=0), S=S, B=B) s = model_qgauss.signal s.scale = 0.015 with rooSilent(): result, frame = model_qgauss.fitTo(dataset0) model_qgauss.signal.scale.release() result, frame = model_qgauss.fitTo(dataset0) model_qgauss.signal.q.release() result, frame = model_qgauss.fitTo(dataset0) if 0 != result.status() or 3 != result.covQual(): logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % (result.status(), result.covQual())) logger.info('Q-Gaussian function\n%s' % result.table(prefix="# ")) models.add(model_qgauss)
def test_qgauss(): logger.info('Test QGaussian_pdf: q-Gaussian') model_qgauss = Models.Fit1D(signal=Models.QGaussian_pdf( name='qG', xvar=mass, q=(1, 0.7, 1.2), mean=signal_gauss.mean, scale=signal_gauss.sigma), background=Models.Bkg_pdf('BkgQG', xvar=mass, power=0)) s = model_qgauss.signal s.scale = 0.015 with rooSilent(): result, frame = model_qgauss.fitTo(dataset0) model_qgauss.signal.scale.release() result, frame = model_qgauss.fitTo(dataset0) model_qgauss.signal.q.release() result, frame = model_qgauss.fitTo(dataset0) if 0 != result.status() or 3 != result.covQual(): logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % (result.status(), result.covQual())) print result else: logger.info('Signal & Background are: %-28s & %-28s ' % (result('S')[0], result('B')[0])) logger.info('Scale & Q are: %-28s & %-28s ' % (result(s.scale)[0], result(s.q)[0])) models.add(model_qgauss)