def quadQuadFE(coord,Dmat): nInt=3 # 2 quadrature points in each direction. (pos,wei)=numericalIntegration.gaussQuad(nInt) Kloc=np.zeros((2*len(coord),2*len(coord))) for i in range(nInt): for j in range(nInt): _,Bmat,Jacobian=shapeFunction.shapeQuadQuadFE(coord,pos[i],pos[j]) Kloc+=np.matmul(Bmat.transpose(),np.matmul(Dmat,Bmat))*Jacobian*wei[i]*wei[j] return Kloc
def ICMFE(coord,Dmat): nInt=2 # 2 quadrature points in each direction. (pos,wei)=numericalIntegration.gaussQuad(nInt) Kloc=np.zeros((2*len(coord),2*len(coord))) Hloc=np.zeros((4,4)) Eloc=np.zeros((2*len(coord),4)) for i in range(nInt): for j in range(nInt): Bmat,Gmat,Jacobian=shapeFunction.shapeICMFE(coord,pos[i],pos[j]) Kloc+=np.matmul(Bmat.transpose(),np.matmul(Dmat,Bmat))*Jacobian*wei[i]*wei[j] Hloc+=np.matmul(Gmat.transpose(),np.matmul(Dmat,Gmat))*Jacobian*wei[i]*wei[j] Eloc+=np.matmul(Bmat.transpose(),np.matmul(Dmat,Gmat))*Jacobian*wei[i]*wei[j] [email protected](Hloc,Eloc.transpose()) return Kloc,Hloc,Eloc
def quadraticFE(inputData): """The solver for second order finite elements (9-node quads & 6-node triangles).""" startTime=time.time() parameters=inputData[0] # Material matrices. materialList=inputData[6] materialMatrix=[None]*len(materialList) for i in range(len(materialList)): materialMatrix[i]=twoDMaterialMatrix(materialList[i],parameters[1]) # Assemble stiffness matrix. coordinates=inputData[5] meshes=inputData[3] materialMeshList=inputData[4] nodeElements=toDC.nodeElementList(coordinates,meshes) Iglo=[] Jglo=[] Vglo=[] for i in range(len(meshes[0])): coord=AMORE.getCoord(coordinates,meshes[0][i]) if len(meshes[0][i])==6: Kloc=stiffnessMatrix.triQuadFE(coord,materialMatrix[materialMeshList[0][i]]) elif len(meshes[0][i])==9: Kloc=stiffnessMatrix.quadQuadFE(coord,materialMatrix[materialMeshList[0][i]]) else: raise ValueError("Wrong element numbering!") Iloc,Jloc,Vloc=stiffnessMatrix.sparsifyElementMatrix(Kloc,meshes[0][i]) Iglo.extend(Iloc) Jglo.extend(Jloc) Vglo.extend(Vloc) Iglo=np.array(Iglo,dtype=int) Jglo=np.array(Jglo,dtype=int) Vglo=np.array(Vglo,dtype='d') Kglo=scipy.sparse.coo_matrix((Vglo,(Iglo,Jglo)),shape=(2*len(coordinates),2*len(coordinates))).tocsr() print("Assembling stiffness matrix costs %s seconds."%(time.time()-startTime)) startTime=time.time() # Force term. indForce=inputData[-2] if indForce[0]: # Body force is imposed. pass forceList=inputData[-1] nInt=3 if indForce[1]: nInt+=2 # Customized boundary force. pos,wei=numericalIntegration.gaussQuad(nInt) fglo=np.zeros((2*len(coordinates),1)) for i in range(len(forceList)//2): node1=forceList[2*i][0] node2=forceList[2*i+1][0] # length=lenEdge(coordinates[node1],coordinates[node2]) # Find the element. elementPosition=(set(nodeElements[node1]) & set(nodeElements[node2])).pop() numbering=meshes[elementPosition[0]][elementPosition[1]] node3=findMidNode(numbering,node1,node2) force1=np.array([forceList[2*i][1:3]]).transpose() force2=np.array([forceList[2*i+1][1:3]]).transpose() floc=np.zeros((6,1)) coord=np.array([coordinates[node1],coordinates[node2],[0.0,0.0]]) if coordinates[node3]: coord[2,:]=np.array(coordinates[node3]) else: coord[2,:]=0.5*(coord[0,:]+coord[1,:]) for j in range(nInt): # Only support linear force distribution. # Otherwise, use customized boundary force. Nmat=shapeFunction.oneDLinear(pos[j]) force=Nmat[0,0]*force1+Nmat[0,2]*force2 quadNmat,Jacobian=shapeFunction.oneDQuadratic(pos[j],coord) floc+=wei[j]*Jacobian*np.matmul(quadNmat.transpose(),force) fglo[2*node1:2*node1+2,0]+=floc[0:2,0] fglo[2*node2:2*node2+2,0]+=floc[2:4,0] fglo[2*node3:2*node3+2,0]+=floc[4:6,0] print("Calculating force term costs %s seconds."%(time.time()-startTime)) startTime=time.time() # Impose constraints. fixList=np.zeros((2*len(coordinates),1)) fixIndexList=np.zeros((2*len(coordinates),1),dtype=int) constraintList=inputData[-3] # Very important!!! Sort the constraints!!! constraintList.sort(key=lambda item:item[0]) for i in constraintList: if i[1]: fixList[2*i[0]]=i[3] fixIndexList[2*i[0]]=1 if i[2]: fixList[2*i[0]+1]=i[4] fixIndexList[2*i[0]+1]=1 # Solve. fglo-=(Kglo.dot(fixList)) Kglo_complete=Kglo.copy() Kglo=Kglo.tolil() count=0 for i in constraintList: if i[1]: delete_row_lil(Kglo,2*i[0]-count) fglo=np.delete(fglo,2*i[0]-count) count+=1 if i[2]: delete_row_lil(Kglo,2*i[0]+1-count) fglo=np.delete(fglo,2*i[0]+1-count) count+=1 Kglo=Kglo.transpose() count=0 for i in constraintList: if i[1]: delete_row_lil(Kglo,2*i[0]-count) count+=1 if i[2]: delete_row_lil(Kglo,2*i[0]+1-count) count+=1 print("Imposing constraints costs %s seconds."%(time.time()-startTime)) startTime=time.time() Kglo=Kglo.tocsc() # factor=cholesky(Kglo) # disp=factor(fglo) disp=spsolve(Kglo,fglo) print("Solving the linear system costs %s seconds."%(time.time()-startTime)) # The complete displacement solution: displacement=np.zeros((2*len(coordinates),1)) count=0 for i in range(2*len(coordinates)): if fixIndexList[i]: displacement[i]=fixList[i] count+=1 else: displacement[i]=disp[i-count] energy=0.5*displacement.transpose()@Kglo_complete@displacement return displacement,energy
def ICMFE(inputData): """The solver for (4-node) ICM finite elements. Warning: The code is only for squares. For general quadrilaterals, the formulation needs to be modified to pass patch tests.""" startTime=time.time() parameters=inputData[0] # Material matrices. materialList=inputData[6] materialMatrix=[None]*len(materialList) for i in range(len(materialList)): materialMatrix[i]=twoDMaterialMatrix(materialList[i],parameters[1]) # Assemble stiffness matrix. coordinates=inputData[5] meshes=inputData[3] materialMeshList=inputData[4] Iglo=[] Jglo=[] Vglo=[] for i in range(len(meshes[0])): coord=AMORE.getCoord(coordinates,meshes[0][i]) if len(meshes[0][i])==4: Kloc,_,_=stiffnessMatrix.ICMFE(coord,materialMatrix[materialMeshList[0][i]]) else: raise ValueError("Wrong element numbering!") Iloc,Jloc,Vloc=stiffnessMatrix.sparsifyElementMatrix(Kloc,meshes[0][i]) Iglo.extend(Iloc) Jglo.extend(Jloc) Vglo.extend(Vloc) Iglo=np.array(Iglo,dtype=int) Jglo=np.array(Jglo,dtype=int) Vglo=np.array(Vglo,dtype='d') Kglo=scipy.sparse.coo_matrix((Vglo,(Iglo,Jglo)),shape=(2*len(coordinates),2*len(coordinates))).tocsr() print("Assembling stiffness matrix costs %s seconds."%(time.time()-startTime)) startTime=time.time() # Force term. indForce=inputData[-2] if indForce[0]: # Body force is imposed. pass forceList=inputData[-1] nInt=2 if indForce[1]: nInt+=3 # Customized boundary force. pos,wei=numericalIntegration.gaussQuad(nInt) fglo=np.zeros((2*len(coordinates),1)) for i in range(len(forceList)//2): node1=forceList[2*i][0] node2=forceList[2*i+1][0] length=lenEdge(coordinates[node1],coordinates[node2]) force1=np.array([forceList[2*i][1:3]]).transpose() force2=np.array([forceList[2*i+1][1:3]]).transpose() floc=np.zeros((4,1)) for j in range(nInt): Nmat=shapeFunction.oneDLinear(pos[j]) force=Nmat[0,0]*force1+Nmat[0,2]*force2 floc+=0.5*wei[j]*length*np.matmul(Nmat.transpose(),force) fglo[2*node1:2*node1+2,0]+=floc[0:2,0] fglo[2*node2:2*node2+2,0]+=floc[2:4,0] print("Calculating force term costs %s seconds."%(time.time()-startTime)) startTime=time.time() # Impose constraints. fixList=np.zeros((2*len(coordinates),1)) fixIndexList=np.zeros((2*len(coordinates),1),dtype=int) constraintList=inputData[-3] # Very important!!! Sort the constraints!!! constraintList.sort(key=lambda item:item[0]) for i in constraintList: if i[1]: fixList[2*i[0]]=i[3] fixIndexList[2*i[0]]=1 if i[2]: fixList[2*i[0]+1]=i[4] fixIndexList[2*i[0]+1]=1 # Solve. fglo-=(Kglo.dot(fixList)) Kglo_complete=Kglo.copy() Kglo=Kglo.tolil() count=0 for i in constraintList: if i[1]: delete_row_lil(Kglo,2*i[0]-count) fglo=np.delete(fglo,2*i[0]-count) count+=1 if i[2]: delete_row_lil(Kglo,2*i[0]+1-count) fglo=np.delete(fglo,2*i[0]+1-count) count+=1 Kglo=Kglo.transpose() count=0 for i in constraintList: if i[1]: delete_row_lil(Kglo,2*i[0]-count) count+=1 if i[2]: delete_row_lil(Kglo,2*i[0]+1-count) count+=1 print("Imposing constraints costs %s seconds."%(time.time()-startTime)) startTime=time.time() Kglo=Kglo.tocsc() print("Number of non-zero sparse matrix entries = %s."%Kglo.count_nonzero()) # factor=cholesky(Kglo) # disp=factor(fglo) disp=spsolve(Kglo,fglo) print("Solving the linear system costs %s seconds."%(time.time()-startTime)) # The complete displacement solution: displacement=np.zeros((2*len(coordinates),1)) count=0 for i in range(2*len(coordinates)): if fixIndexList[i]: displacement[i]=fixList[i] count+=1 else: displacement[i]=disp[i-count] energy=0.5*displacement.transpose()@Kglo_complete@displacement return displacement,energy