layer.append(ConvLayer(PNN_model['layers'][i], PNN_model['layers'][i + 1])) net = Network(layer) #%% Pansharpening #load images inputImg = sio.loadmat(testset_path) I_MS_LR = np.array(inputImg['I_MS'], dtype='double').transpose(2, 0, 1) I_PAN = np.array(inputImg['I_PAN'], dtype='double') #Testing I_MS_HR = PNN_test(I_MS_LR, I_PAN, inputImg, PNN_model, net, path, mode, epochs) #%% save data export2(I_MS_HR, test_dir_out) #%% Visualization from image_quantile import image_quantile, image_stretch import matplotlib.pyplot as plt plt.close('all') I_PAN = np.expand_dims(I_PAN, axis=0) plt.figure() plt.subplot(131) th_PAN = image_quantile(I_PAN, np.array([0.01, 0.99])) PAN = image_stretch(np.squeeze(I_PAN), np.squeeze(th_PAN)) plt.imshow(image_stretch(np.squeeze(I_PAN), np.squeeze(th_PAN)), cmap='gray', clim=[0, 1])
elapsed = time.time() - tic print("Time Brovey:", elapsed, 'sec') #%% CNN_method tic = time.time() I_Fus_CNN = np.zeros(I_MS.shape) I_Fus_CNN = PNN_test(I_MS_LR, I_PAN, inputImg, PNN_model, net, path, mode, epochs) elapsed = time.time() - tic print("Time CNN:", elapsed, 'sec') #%% save data choice one for time export2(I_Fus_CNN, test_dir_out) #%% Visualization from image_quantile import image_quantile, image_stretch import matplotlib.pyplot as plt plt.close('all') I_PAN = np.expand_dims(I_PAN, axis=0) plt.figure() plt.subplot(231) th_PAN = image_quantile(I_PAN, np.array([0.01, 0.99])) PAN = image_stretch(np.squeeze(I_PAN), np.squeeze(th_PAN)) plt.imshow(image_stretch(np.squeeze(I_PAN), np.squeeze(th_PAN)), cmap='gray', clim=[0, 1])