Example #1
0
def test_propagate_plane_to_curved_flat_arbitrary():
    k = 2 * np.pi / 860e-9
    num_pointss = np.asarray((2**6, 2**7))
    waist0s = np.asarray((20e-6, 25e-6))
    rs_support = (np.pi * num_pointss)**0.5 * waist0s
    num_pointss2 = 100, 101
    z_Rs = waist0s**2 * k / 2
    z_R = np.prod(z_Rs)**0.5
    num_rayleighs_mean = 0
    z2_mean = num_rayleighs_mean * z_R
    rqs = ((0, 0), (0, 0), (0, 0), (0, 0)), ((30e-6, -10e-6), (30e3, 100e3),
                                             (30e-6, -15e-6), (20e3, 80e3))
    for r_offsets, q_offsets, rs_center, qs_center in rqs:
        x, y = asbp.calc_xy(rs_support, num_pointss, rs_center)
        num_rayleighs = num_rayleighs_mean + np.random.uniform(
            -0.5, 0.5, num_pointss2) / 2
        z2 = z_R * num_rayleighs
        kz_mode = 'local_xy' if qs_center == (0, 0) else 'paraxial'
        Er1 = asbp.calc_gaussian(k, x, y, waist0s, 0, r_offsets, q_offsets)
        r2_centers = asbp.adjust_r(k, rs_center, z2_mean, qs_center, kz_mode)
        x2, y2 = asbp.calc_xy(rs_support, num_pointss2, r2_centers)
        Er2, gradxyEr2 = asbp.propagate_plane_to_curved_flat_arbitrary(
            k, rs_support, Er1, z2, x2, y2, qs_center, kz_mode)
        Er2_theory, gradxyEr2_theory = asbp.calc_gaussian(
            k, x2, y2, waist0s, z2, r_offsets, q_offsets, True)
        assert mathx.allclose(Er2, Er2_theory, 1e-7)
        assert mathx.allclose(gradxyEr2, gradxyEr2_theory, 1e-7)
        propagator = asbp.prepare_plane_to_curved_flat_arbitrary(
            k, rs_support, Er1.shape, z2, x2, y2, qs_center, kz_mode)
        Er2p = propagator.apply(Er1)
        assert mathx.allclose(Er2, Er2p, 1e-7)
def test_propagate_plane_to_curved_spherical_gradxy_localxy():
    """Use propagate_plane_to_curved_spherical with plane surface to allow numerical calculation of the gradient."""
    k = 2 * np.pi / 860e-9
    num_pointss = np.asarray((2**6, 2**7))
    waist0s = np.asarray((20e-6, 25e-6))
    rs_support = (np.pi * num_pointss)**0.5 * waist0s
    z_Rs = waist0s**2 * k / 2
    z_R = np.prod(z_Rs)**0.5
    num_rayleighs = 5
    m = (1 + num_rayleighs**2)**0.5
    z2_mean = num_rayleighs * z_R
    r2_supports = rs_support * m
    rocs = z2_mean + z_Rs**2 / z2_mean
    for r_offsets, q_offsets, rs_center, qs_center in (((0, 0), (0, 0), (0, 0),
                                                        (0, 0)),
                                                       ((30e-6, -10e-6),
                                                        (30e3, 100e3),
                                                        (30e-6, -15e-6),
                                                        (30e3, 100e3))):
        x1, y1 = asbp.calc_xy(rs_support, num_pointss, rs_center)
        z2 = z_R * num_rayleighs * np.ones(num_pointss)
        r2_centers = asbp.adjust_r(k, rs_center, z2_mean, qs_center,
                                   'local_xy')
        Er1 = asbp.calc_gaussian(k, x1, y1, waist0s, 0, r_offsets, q_offsets)
        Er2, gradxyEr2 = asbp.propagate_plane_to_curved_spherical(
            k, rs_support, Er1, z2, m, rs_center, qs_center, r2_centers,
            'local_xy')
        x2, y2 = asbp.calc_xy(r2_supports, num_pointss, r2_centers)
        gradxyEr2_num = asbp.calc_gradxyE_spherical(k, r2_supports, Er2, rocs,
                                                    r2_centers, qs_center)
        assert mathx.allclose(gradxyEr2, gradxyEr2_num, 1e-6)
def test_curved_interface_collimate():
    lamb = 587.6e-9
    waist0 = 150e-6
    num_points = 2**7
    k = 2 * np.pi / lamb
    r0_support = (np.pi * num_points)**0.5 * waist0
    x0, y0 = asbp.calc_xy(r0_support, num_points)
    Er0 = asbp.calc_gaussian(k, x0, y0, waist0)
    f = 100e-3
    n = 1.5
    roc = f * (n - 1)
    z_R = np.pi * waist0**2 / lamb
    m = (1 + (f / z_R)**2)**0.5
    r1_support = m * r0_support
    x1, y1 = asbp.calc_xy(r1_support, num_points)
    sag = functions.calc_sphere_sag_xy(roc, x1, y1)
    Er1, _ = asbp.propagate_plane_to_curved_spherical(k, r0_support, Er0,
                                                      f + sag, m)
    Er2, propagator = asbp.invert_plane_to_curved_spherical(
        k * n, r1_support, Er1, -f * n + sag, 1)
    ##
    waist2 = f * lamb / (np.pi * waist0)
    Er2_theory = asbp.calc_gaussian(k, x1, y1, waist2)
    Er2_theory *= mathx.expj(np.angle(Er2[0, 0] / Er2_theory[0, 0]))
    assert mathx.allclose(Er2, Er2_theory, 1e-3)
def test_propagate_plane_to_plane_spherical():
    k = 2 * np.pi / 860e-9
    num_pointss = np.asarray((2**6, 2**7))
    waist0 = 20e-6
    z_R = waist0**2 * k / 2
    z = 10e-3
    m_gaussian = (1 + (z / z_R)**2)**0.5

    r_centerss = (0, 0), (10e-6, -15e-6)
    q_centerss = (0, 0), (10e3, 15e3)
    r_offsetss = (0, 0), (-10e-6, 20e-6)
    q_offsetss = (0, 0), (10e3, -15e3)

    for rs_center, qs_center, r_offsets, q_offsets in zip(
            r_centerss, q_centerss, r_offsetss, q_offsetss):
        r0_supports = (np.pi * num_pointss)**0.5 * waist0
        m = asbp.calc_curved_propagation_m(k, r0_supports, num_pointss, np.inf,
                                           z)
        assert np.allclose(m, m_gaussian)
        x0, y0 = asbp.calc_xy(r0_supports, num_pointss, rs_center)
        Er0 = asbp.calc_gaussian(k, x0, y0, waist0, 0, r_offsets, q_offsets)
        kz_mode = 'local_xy' if qs_center == (0, 0) else 'paraxial'
        r1_centers = asbp.adjust_r(k, rs_center, z, qs_center, kz_mode)
        Er1 = asbp.propagate_plane_to_plane_spherical(k, r0_supports,
                                                      Er0.copy(), z, m,
                                                      rs_center, qs_center,
                                                      r1_centers, kz_mode)
        r1_supports = r0_supports * m
        x1, y1 = asbp.calc_xy(r1_supports, num_pointss, r1_centers)
        Er1_theory = asbp.calc_gaussian(k, x1, y1, waist0, z, r_offsets,
                                        q_offsets)
        assert mathx.allclose(Er1, Er1_theory, atol=1e-6)
Example #5
0
def test_propagate_plane_to_curved_flat_inclined():
    lamb = 860e-9
    theta = np.pi / 6
    waist = 100e-6
    num_points = 64
    k = 2 * np.pi / lamb
    z_R = np.pi * waist**2 / lamb
    r_support = waist * 12
    z0 = -z_R * 0.5
    z1m = z_R * 0.5

    # When the central k vector is in the xz or yz planes then in local_xy mode, the kz expansion is exact to second
    # order. Otherwise it is only approximate to second order since it ignores the crossed second derivatives.
    for phi, atol_frac in ((0, 2e-3), (np.pi / 2, 2e-3), (np.pi / 4, 1e-1)):
        vector = np.asarray(mathx.polar_to_cart(1, theta, phi))
        r0_centers = vector[:2] / vector[2] * z0
        qs_center = vector[:2] * k
        x0, y0 = asbp.calc_xy(r_support, num_points, r0_centers)
        matrix = otk.h4t.make_frame(vector, (0, 1, 0))
        x0l, y0l, z0l, _ = matseq.mult_mat_vec(np.linalg.inv(matrix),
                                               (x0, y0, z0, 1))
        Er0 = asbp.calc_gaussian(k, x0l, y0l, waist, z0l)
        r1_centers = vector[:2] / vector[2] * z1m
        x1, y1 = asbp.calc_xy(r_support, num_points, r1_centers)
        z1 = z1m + 0 * (x1 - r1_centers[0]) + 0 * (y1 - r1_centers[1])
        x1l, y1l, z1l, _ = matseq.mult_mat_vec(np.linalg.inv(matrix),
                                               (x1, y1, z1, 1))
        Er1_theory, gradxyEr1_theory = asbp.calc_gaussian(k,
                                                          x1l,
                                                          y1l,
                                                          waist,
                                                          z1l,
                                                          gradr=True)
        Er1, gradxyEr1 = asbp.propagate_plane_to_curved_flat(
            k, r_support, Er0, z1 - z0, qs_center, 'local_xy')
        assert mathx.allclose(Er1, Er1_theory, atol_frac)
        # We don't expect the derivatives to agree because they are along the inclined surface.

    if 0:
        ##
        plot0 = asbp.plot_r_q_polar(r_support, Er0, r0_centers, qs_center)
        plot0[0].setWindowTitle('Er0')
        plot1 = asbp.plot_r_q_polar(r_support, Er1, r1_centers, qs_center)
        plot1[0].setWindowTitle('Er1')
        plot1_theory = asbp.plot_r_q_polar(r_support, Er1_theory, r1_centers,
                                           qs_center)
        plot1_theory[0].setWindowTitle('Er1_theory')
        plot_diff = asbp.plot_r_q_polar(r_support, Er1 - Er1_theory,
                                        r1_centers, qs_center)
        plot_diff[0].setWindowTitle('diff')

        plot_diff_abs = asbp.plot_r_q_polar(r_support,
                                            abs(Er1) - abs(Er1_theory),
                                            r1_centers, qs_center)
        plot_diff_abs[0].setWindowTitle('diff_abs')
def test_propagate_plane_to_curved_spherical_arbitrary():
    k = 2 * np.pi / 860e-9
    num_pointss = np.asarray((2**6, 2**7))
    waist0s = np.asarray((20e-6, 25e-6))
    rs_support = (np.pi * num_pointss)**0.5 * waist0s
    num_pointss2 = 100, 101
    for r_offsets, q_offsets, rs_center, qs_center in (((0, 0), (0, 0), (0, 0),
                                                        (0,
                                                         0)), ((30e-6, -10e-6),
                                                               (30e3, 100e3),
                                                               (30e-6, -15e-6),
                                                               (30e3, 100e3)),
                                                       ((30e-6, -10e-6),
                                                        (30e3, 100e3),
                                                        (30e-6, -15e-6), (0,
                                                                          0))):
        x1, y1 = asbp.calc_xy(rs_support, num_pointss, rs_center)
        z_Rs = waist0s**2 * k / 2
        num_rayleighs_mean = 5
        m = (1 + num_rayleighs_mean**2)**0.5
        z_R = np.prod(z_Rs)**0.5
        num_rayleighs = num_rayleighs_mean + np.random.uniform(
            -0.5, 0.5, num_pointss2) / 2
        z2 = z_R * num_rayleighs
        z2_mean = num_rayleighs_mean * z_R
        r2_supports = rs_support * m
        kz_mode = 'local_xy' if qs_center == (0, 0) else 'paraxial'
        r2_centers = asbp.adjust_r(k, rs_center, z2_mean, qs_center, kz_mode)

        xo, yo = asbp.calc_xy(r2_supports, num_pointss2, r2_centers)
        mx = m * (1 + 0.1 * np.random.uniform(-1, 1, num_pointss2))
        my = m * (1 + 0.1 * np.random.uniform(-1, 1, num_pointss2))
        roc_x = z2 / (mx - 1)
        roc_y = z2 / (my - 1)

        Er1 = asbp.calc_gaussian(k, x1, y1, waist0s, 0, r_offsets, q_offsets)
        Er2, gradxyEr2 = asbp.propagate_plane_to_curved_spherical_arbitrary(
            k, rs_support, Er1, z2, xo, yo, roc_x, roc_y, rs_center, qs_center,
            r2_centers, kz_mode)
        x2, y2 = asbp.calc_xy(r2_supports, num_pointss2, r2_centers)
        Er2_theory, gradxyEr2_theory = asbp.calc_gaussian(k,
                                                          x2,
                                                          y2,
                                                          waist0s,
                                                          z2,
                                                          r_offsets,
                                                          q_offsets,
                                                          gradr=True)
        assert mathx.allclose(Er2, Er2_theory, 1e-7)
        assert mathx.allclose(gradxyEr2, gradxyEr2_theory, 1e-6)
        propagator = asbp.prepare_plane_to_curved_spherical_arbitrary(
            k, rs_support, Er1.shape, z2, xo, yo, roc_x, roc_y, rs_center,
            qs_center, r2_centers, kz_mode)
        Er2p = propagator.apply(Er1)
        assert mathx.allclose(Er2, Er2p, 1e-15)
def test_curved_interface_collimate_offset():
    lamb = 587.6e-9
    waist0 = 30e-6
    num_points = 2**7
    k = 2 * np.pi / lamb
    r0_support = (np.pi * num_points)**0.5 * waist0
    # Define x lateral offset of beam.
    r_offsets = np.asarray((4e-3, -2e-3))
    # We center the numerical window on the beam.
    rs_center = r_offsets
    x0, y0 = asbp.calc_xy(r0_support, num_points, rs_center)
    # Create input beam.
    Er0 = asbp.calc_gaussian(k, x0, y0, waist0, r0s=r_offsets)
    # We will propagate it a distance f.
    f = 100e-3
    z_R = np.pi * waist0**2 / lamb
    m = (1 + (f / z_R)**2)**0.5
    # We collimate it with a spherical interface.
    n = 1.5
    roc = f * (n - 1)
    # At the interface,  support is expanded by the curved wavefront propagation.
    r1_support = m * r0_support
    x1, y1 = asbp.calc_xy(r1_support, num_points, rs_center)
    # Calculate and plot interface sag.
    sag = functions.calc_sphere_sag_xy(roc, x1, y1)
    xu, yu, sagu = asbp.unroll_r(r1_support, sag)
    # Propagate to curved surface.
    Er1, _ = asbp.propagate_plane_to_curved_spherical(k, r0_support, Er0,
                                                      f + sag, m, rs_center)
    xu, yu, Er1u = asbp.unroll_r(r1_support, Er1)
    #
    # x2, y2=asbp.calc_xy(r1_support, num_points)
    qs_centers2 = -r_offsets / f * k
    Er2, propagator = asbp.invert_plane_to_curved_spherical(
        k * n,
        r1_support,
        Er1,
        -f * n + sag,
        1, (0, 0),
        qs_centers2,
        max_iterations=10)  # -x_offset/f*k
    xu, yu, Er2u = asbp.unroll_r(r1_support, Er2)
    tilt_factor = mathx.expj(-(xu * r_offsets[0] + yu * r_offsets[1]) / f * k)
    ##
    waist2 = f * lamb / (np.pi * waist0)
    Er2_theory = asbp.calc_gaussian(k, x1, y1, waist2) * tilt_factor
    Er2_theory *= mathx.expj(np.angle(Er2[0, 0] / Er2_theory[0, 0]))
    assert mathx.allclose(abs(Er2), abs(Er2_theory), 2e-2)
    if 0:
        ##
        Er2_fig = asbp.plot_r_q_polar(r1_support, Er2, qs_center=qs_centers2)
        Er2_theory_fig = asbp.plot_r_q_polar(r1_support,
                                             Er2_theory,
                                             qs_center=qs_centers2)
def test_propagate_plane_to_curved_spherical_inclined():
    lamb = 860e-9
    theta = np.pi / 6
    waist = 100e-6
    num_points = 64
    k = 2 * np.pi / lamb
    z_R = np.pi * waist**2 / lamb
    r0_support = waist * 12
    z0 = -z_R * 0.5
    z1m = z_R * 2
    m = 2
    for phi, apod_frac in ((0, 1e-2), (np.pi / 2, 1e-2), (np.pi / 4, 2e-1)):
        vector = np.asarray(mathx.polar_to_cart(1, theta, phi))
        r0_centers = vector[:2] / vector[2] * z0
        qs_center = vector[:2] * k
        x0, y0 = asbp.calc_xy(r0_support, num_points, r0_centers)
        matrix = otk.h4t.make_frame(vector, (0, 1, 0))
        x0l, y0l, z0l, _ = matseq.mult_mat_vec(np.linalg.inv(matrix),
                                               (x0, y0, z0, 1))
        Er0 = asbp.calc_gaussian(k, x0l, y0l, waist, z0l)
        r1_centers = vector[:2] / vector[2] * z1m
        r1_support = r0_support * m
        x1, y1 = asbp.calc_xy(r1_support, num_points, r1_centers)
        z1 = z1m + 1e0 * (x1 - r1_centers[0]) + 1e2 * (y1 - r1_centers[1])**2
        x1l, y1l, z1l, _ = matseq.mult_mat_vec(np.linalg.inv(matrix),
                                               (x1, y1, z1, 1))
        Er1_theory = asbp.calc_gaussian(k, x1l, y1l, waist, z1l)
        Er1, gradxyEr1 = asbp.propagate_plane_to_curved_spherical(
            k, r0_support, Er0, z1 - z0, m, r0_centers, qs_center, r1_centers,
            'local_xy')
        assert mathx.allclose(Er1, Er1_theory, apod_frac)
    if 0:
        ##
        plot0 = asbp.plot_r_q_polar(r0_support, Er0, r0_centers, qs_center)
        plot0[0].setWindowTitle('Er0')
        plot1 = asbp.plot_r_q_polar(r1_support, Er1, r1_centers, qs_center)
        plot1[0].setWindowTitle('Er1')
        plot1_theory = asbp.plot_r_q_polar(r1_support, Er1_theory, r1_centers,
                                           qs_center)
        plot1_theory[0].setWindowTitle('Er1_theory')
        plot_diff = asbp.plot_r_q_polar(r1_support, Er1 - Er1_theory,
                                        r1_centers, qs_center)
        plot_diff[0].setWindowTitle('diff')

        plot_diff_abs = asbp.plot_r_q_polar(r1_support,
                                            abs(Er1) - abs(Er1_theory),
                                            r1_centers, qs_center)
        plot_diff_abs[0].setWindowTitle('diff_abs')
Example #9
0
def test_propagate_plane_to_plane_flat_inclined():
    """Propagate an inclined Gaussian beam between two planes."""
    lamb = 860e-9
    theta = np.pi / 6
    phi = np.pi / 4
    waist = 100e-6
    num_points = 64
    k = 2 * np.pi / lamb
    z_R = np.pi * waist**2 / lamb
    r_support = waist * 12
    vector = np.asarray(mathx.polar_to_cart(1, theta, phi))
    z0 = -z_R * 0.5
    z1 = z_R * 0.5
    r0_centers = vector[:2] / vector[2] * z0
    qs_center = vector[:2] * k
    x0, y0 = asbp.calc_xy(r_support, num_points, r0_centers)
    matrix = otk.h4t.make_frame(vector, (0, 1, 0))
    x0l, y0l, z0l, _ = matseq.mult_mat_vec(np.linalg.inv(matrix),
                                           (x0, y0, z0, 1))
    Er0 = asbp.calc_gaussian(k, x0l, y0l, waist, z0l)
    r1_centers = vector[:2] / vector[2] * z1
    x1, y1 = asbp.calc_xy(r_support, num_points, r1_centers)
    x1l, y1l, z1l, _ = matseq.mult_mat_vec(np.linalg.inv(matrix),
                                           (x1, y1, z1, 1))
    Er1_theory = asbp.calc_gaussian(k, x1l, y1l, waist, z1l)
    for kz_mode, atol_frac in (('local_xy', 1e-1), ('local', 1e-2), ('exact',
                                                                     1e-5)):
        ##
        Er1 = asbp.propagate_plane_to_plane_flat(k, r_support, Er0, z1 - z0,
                                                 qs_center, kz_mode)
        assert mathx.allclose(Er1, Er1_theory, atol_frac)
    if 0:
        ##
        plot0 = asbp.plot_r_q_polar(r_support, Er0, r0_centers, qs_center)
        plot0[0].setWindowTitle('Er0')
        plot1 = asbp.plot_r_q_polar(r_support, Er1, r1_centers, qs_center)
        plot1[0].setWindowTitle('Er1')
        plot1_theory = asbp.plot_r_q_polar(r_support, Er1_theory, r1_centers,
                                           qs_center)
        plot1_theory[0].setWindowTitle('Er1_theory')
        plot_diff = asbp.plot_r_q_polar(r_support, Er1 - Er1_theory,
                                        r1_centers, qs_center)
        plot_diff[0].setWindowTitle('diff')

        plot_diff_abs = asbp.plot_r_q_polar(r_support,
                                            abs(Er1) - abs(Er1_theory),
                                            r1_centers, qs_center)
        plot_diff_abs[0].setWindowTitle('diff_abs')
Example #10
0
def test_propagate_plane_to_curved_flat():
    k = 2 * np.pi / 860e-9
    num_pointss = np.asarray((2**6, 2**7))
    waist0s = np.asarray((20e-6, 25e-6))
    rs_support = (np.pi * num_pointss)**0.5 * waist0s
    rqs = ((0, 0), (0, 0), (0, 0), (0, 0)), ((30e-6, -10e-6), (30e3, 100e3),
                                             (30e-6, -15e-6), (20e3, 80e3))
    for r_offsets, q_offsets, rs_center, qs_center in rqs:
        x, y = asbp.calc_xy(rs_support, num_pointss, rs_center)
        z_Rs = waist0s**2 * k / 2
        z_R = np.prod(z_Rs)**0.5
        num_rayleighs = np.random.randn(*num_pointss) / 5
        z2 = z_R * num_rayleighs
        kz_mode = 'local_xy' if qs_center == (0, 0) else 'paraxial'
        Er1 = asbp.calc_gaussian(k, x, y, waist0s, 0, r_offsets, q_offsets)
        Er2, gradxyEr2 = asbp.propagate_plane_to_curved_flat(
            k, rs_support, Er1, z2, qs_center, kz_mode)
        Er2_theory, gradxyEr2_theory = asbp.calc_gaussian(
            k, x, y, waist0s, z2, r_offsets, q_offsets, True)
        assert mathx.allclose(Er2, Er2_theory, 1e-7)
        assert mathx.allclose(gradxyEr2, gradxyEr2_theory, 1e-7)
        propagator = asbp.prepare_plane_to_curved_flat(k, rs_support,
                                                       Er1.shape, z2,
                                                       qs_center, kz_mode)
        Er2p = propagator.apply(Er1)
        assert mathx.allclose(Er2, Er2p, 1e-15)
Example #11
0
def test_propagate_plane_to_plane_flat():
    k = 2 * np.pi / 860e-9
    num_pointss = np.asarray((2**6, 2**7))
    waist0 = 20e-6
    z_R = waist0**2 * k / 2
    z1 = -0.5e-3

    r_centerss = (0, 0), (10e-6, -15e-6)
    q_centerss = (0, 0), (10e3, 15e3)
    r_offsetss = (0, 0), (-10e-6, 20e-6)
    q_offsetss = (0, 0), (10e3, -15e3)

    for rs_center, qs_center, r_offsets, q_offsets in zip(
            r_centerss, q_centerss, r_offsetss, q_offsetss):
        rs_support = (np.pi * num_pointss)**0.5 * waist0
        x, y = asbp.calc_xy(rs_support, num_pointss, rs_center)
        Er1 = asbp.calc_gaussian(k, x, y, waist0, z1, r_offsets, q_offsets)
        z2 = 1e-3
        if qs_center == (0, 0):
            kz_mode = 'local_xy'
        else:
            kz_mode = 'paraxial'
        Er2 = asbp.propagate_plane_to_plane_flat(k,
                                                 rs_support,
                                                 Er1,
                                                 z2 - z1,
                                                 qs_center,
                                                 kz_mode=kz_mode)
        Er2_theory = asbp.calc_gaussian(k, x, y, waist0, z2, r_offsets,
                                        q_offsets)
        assert mathx.allclose(Er2, Er2_theory, atol=1e-6)
def test_invert_plane_to_curved_spherical():
    k = 2 * np.pi / 860e-9
    num_pointss = np.asarray((2**7, 2**7))
    waist0s = np.asarray((20e-6, 25e-6))
    rs_support = (np.pi * num_pointss)**0.5 * waist0s
    r_offsets = 30e-6, -10e-6
    q_offsets = 30e3, 100e3
    rs_center = 30e-6, -15e-6
    qs_center = 20e3, 80e3
    x1, y1 = asbp.calc_xy(rs_support, num_pointss, rs_center)
    z_Rs = waist0s**2 * k / 2
    num_rayleighs_mean = 5
    m = (1 + num_rayleighs_mean**2)**0.5
    xf = (x1 - rs_center[0]) / rs_support[0] * 2
    yf = (y1 - rs_center[1]) / rs_support[0] * 2
    num_rayleighs = num_rayleighs_mean + xf * yf - xf + yf**2  # np.random.randn(*num_pointss)/2
    z_R = np.prod(z_Rs)**0.5
    z2 = z_R * num_rayleighs
    z2_mean = z_R * num_rayleighs_mean

    kz_mode = 'local_xy' if qs_center == (0, 0) else 'paraxial'

    r2_supports = rs_support * m
    r2_centers = asbp.adjust_r(k, rs_center, z2_mean, qs_center, kz_mode)
    x2, y2 = asbp.calc_xy(r2_supports, num_pointss, r2_centers)
    Er1_theory = asbp.calc_gaussian(k, x1, y1, waist0s, 0, r_offsets,
                                    q_offsets)
    Er2 = asbp.calc_gaussian(k, x2, y2, waist0s, z2, r_offsets, q_offsets)

    Er1, propagator = asbp.invert_plane_to_curved_spherical(k,
                                                            rs_support,
                                                            Er2,
                                                            z2,
                                                            m,
                                                            rs_center,
                                                            qs_center,
                                                            r2_centers,
                                                            kz_mode=kz_mode,
                                                            max_iterations=10,
                                                            tol=1e-8)
    assert mathx.allclose(Er2, propagator.apply(Er1), 1e-6)
    assert mathx.allclose(Er1, Er1_theory, 1e-7)
Example #13
0
def test_CurvedProfile():
    # Propagate Gaussian beam onto curved surface. Plane 0 is the waist, plane 1 is the start surface and plane 2 is the
    # final surface.
    lamb = 860e-9
    n = 1.5
    waist0s = np.asarray((20e-6, 22e-6))
    rs_support0 = waist0s * 8

    num_pointss1 = 48, 64

    num_pointss2 = 63, 64
    roc_x2 = 50e-3
    roc_y2 = 50e-3
    k = 2 * np.pi * n / lamb
    z_Rs = waist0s**2 * k / 2

    trials = (
        (0, (0, 0), (0, 0), (0, 0),
         (0, 0)),  # 0 - propagate from waist a short distance.
        (
            50e-3, (0, 0), (0, 0), (0, 0), (0, 0)
        ),  # 1 - propagate between two places both with significant curvature.
        (50e-3, (30e-6, -10e-6), (5e3, 10e3), (30e-6, -15e-6),
         (4e3, 11e3)),  # 2 - with offsets.
        (-5e-3, (1e-3, 0.5e-3), (-10e3, 5e3), (1e-3, 0.5e-3), (-10e3, 5e3)))

    for trial_num, trial in enumerate(trials):
        z1, rs_waist, qs_waist, rs_center1, qs_center = trial
        kz_mode = 'local_xy' if qs_center == (0, 0) else 'paraxial'

        m1s = (1 + (z1 / z_Rs)**2)**0.5
        rs_support1 = rs_support0 * m1s

        profile1_theory = asbp.PlaneProfile.make_gaussian(
            lamb, n, waist0s, rs_support1, num_pointss1, rs_waist, qs_waist, 0,
            rs_center1, qs_center, z1)

        def calc_z2(x2, y2):
            return z1 + x2**2 / (2 * roc_x2) + y2**2 / (2 * roc_y2)

        x2, y2 = asbp.calc_xy(rs_support1, num_pointss2, rs_center1)
        z2 = calc_z2(x2, y2)

        profile2 = asbp.CurvedProfile.make_gaussian(lamb, n, waist0s,
                                                    rs_support1, num_pointss2,
                                                    rs_waist, qs_waist, 0,
                                                    rs_center1, qs_center,
                                                    calc_z2)
        assert np.isclose(profile2.z_center, calc_z2(*rs_center1))

        profile1 = profile2.planarize(z1, rs_support1, num_pointss1, kz_mode)
        assert profile1.n == profile2.n
        assert mathx.allclose(profile1_theory.Er, profile1.Er, 1e-4)
Example #14
0
def test_calc_gradxyE_spherical():
    rs_support = 200e-6
    num_points = 64
    qs_center = (100e3, -50e3)
    rs_center = (1e-3, 0.5e-3)
    k = 2 * np.pi / 860e-9
    x, y = asbp.calc_xy(rs_support, num_points, rs_center)
    Er = asbp.calc_gaussian(k, x, y, 20e-6, 0.5e-3, rs_center, qs_center)
    gradxyE_flat = asbp.calc_gradxyE(rs_support, Er, qs_center)
    gradxyE_spherical = asbp.calc_gradxyE_spherical(k, rs_support, Er, 1e-3,
                                                    rs_center, qs_center)
    assert all(
        mathx.allclose(g1, g2, atol_frac=1e-6)
        for g1, g2 in zip(gradxyE_flat, gradxyE_spherical))
Example #15
0
def test_propagate_curved_to_plane_flat():
    k = 2 * np.pi / 860e-9
    num_pointss = np.asarray((2**7, 2**7))
    waist0s = np.asarray((200e-6, 300e-6))
    rs_support = (np.pi * num_pointss)**0.5 * waist0s
    rqs = ((0, 0), (0, 0), (0, 0), (0, 0)), ((30e-6, -10e-6), (30e3, 100e3),
                                             (30e-6, -15e-6), (20e3, 80e3))
    for r_offsets, q_offsets, rs_center, qs_center in rqs:
        x1, y1 = asbp.calc_xy(rs_support, num_pointss, rs_center)
        z_Rs = waist0s**2 * k / 2
        num_rayleighs_mean = 0.5
        xf = (x1 - rs_center[0]) / rs_support[0] * 0.1
        yf = (y1 - rs_center[1]) / rs_support[0] * 0.1
        num_rayleighs = num_rayleighs_mean + 0.1 * (
            xf * yf - xf + yf**2)  # np.random.randn(*num_pointss)/2
        z_R = np.prod(z_Rs)**0.5
        z2 = z_R * num_rayleighs
        z2_mean = z_R * num_rayleighs_mean

        kz_mode = 'local_xy' if qs_center == (0, 0) else 'paraxial'

        r2_centers = asbp.adjust_r(k, rs_center, z2_mean, qs_center, kz_mode)
        x2, y2 = asbp.calc_xy(rs_support, num_pointss, r2_centers)
        Er1_theory = asbp.calc_gaussian(k, x1, y1, waist0s, 0, r_offsets,
                                        q_offsets)
        Er2 = asbp.calc_gaussian(k, x2, y2, waist0s, z2, r_offsets, q_offsets)

        Er1, propagator = asbp.invert_plane_to_curved_flat(k,
                                                           rs_support,
                                                           Er2,
                                                           z2,
                                                           qs_center,
                                                           kz_mode=kz_mode,
                                                           max_iterations=10,
                                                           tol=1e-20)
        assert abs(Er2 - propagator.apply(Er1)).max() < 1e-8
        assert mathx.allclose(Er1, Er1_theory, 1e-7)
Example #16
0
    def propagate(self):
        lamb = self.wavelength_widget.value() * 1e-9
        waist0 = self.source_diameter_widget.value() / 2 * 1e-3
        num_points = self.num_points
        rs_waist = np.asarray((self.source_x_widget.value() * 1e-3,
                               self.source_y_widget.value() * 1e-3))
        source_z = self.source_z_widget.value() * 1e-3
        roc1 = self.roc1_widget.value() * 1e-3
        roc2 = self.roc2_widget.value() * 1e-3
        d = self.thickness_widget.value() * 1e-3
        n = ri.FixedIndex(self.n_widget.value())
        # These are calculated by lens update.
        f = self.f
        w1 = self.w1
        w2 = self.w2

        r0_centers = rs_waist
        q0_centers = (0, 0)
        k = 2 * np.pi / lamb
        r0_support = waist0 * self.waist0_factor  # *#(np.pi*num_points)**0.5*waist0
        x0, y0 = asbp.calc_xy(r0_support, num_points, r0_centers)

        # Create input beam and prepare for propagation to first surface.
        Er0 = asbp.calc_gaussian(k, x0, y0, waist0, r0s=rs_waist)

        profile0 = asbp.PlaneProfile(
            lamb, 1, source_z, r0_support, Er0,
            asbp.calc_gradxyE(r0_support, Er0, q0_centers), r0_centers,
            q0_centers)
        b0 = asbt1.Beam(profile0)
        s1 = rt1.Surface(rt1.SphericalProfile(roc1),
                         otk.h4t.make_translation(0, 0, w1),
                         interface=rt1.PerfectRefractor(ri.air, n))
        s2 = rt1.Surface(rt1.SphericalProfile(-roc2),
                         otk.h4t.make_translation(0, 0, w1 + d),
                         interface=rt1.PerfectRefractor(n, ri.air))
        s3 = rt1.Surface(rt1.PlanarProfile(),
                         otk.h4t.make_translation(0, 0, w1 + d + w2))

        segments = asbt1.trace_surfaces(
            b0, (s1, s2, s3), ('transmitted', 'transmitted', None))[0]
        b1_incident = segments[0].beams[1]
        b1_refracted = segments[1].beams[0]
        b1_plane = segments[1].planarized_beam
        b2_incident = segments[1].beams[1]
        b2_refracted = segments[2].beams[0]
        b2_plane = segments[2].planarized_beam
        b3 = segments[2].beams[1]
        # b1_incident = b0.propagate(s1, self.kz_mode)
        # b1_refracted = b1_incident.refract(s1, self.kz_mode)
        # b1_plane = b1_refracted.planarize(kz_mode=self.kz_mode, invert_kwargs=self.invert_kwargs)
        # b2_incident = b1_plane.propagate(s2, self.kz_mode)
        # b2_refracted = b2_incident.refract(s2, self.kz_mode)
        # b2_plane = b2_refracted.planarize(kz_mode=self.kz_mode, invert_kwargs=self.invert_kwargs)
        # b3 = b2_plane.propagate(s3, kz_mode=self.kz_mode)

        self.b0 = b0
        self.b1_incident = b1_incident
        self.b1_refracted = b1_refracted
        self.b1_plane = b1_plane
        self.b2_incident = b2_incident
        self.b2_plane = b2_plane
        self.b3 = b3
        waist3 = f * lamb / (np.pi * waist0)
        self.b3_scale = waist3 / waist0

        self.update_plots()
def test_invert_plane_to_curved_spherical_arbitrary():
    # Number of points to invert to.
    num_pointss1 = 48, 64
    # Starting number of points.
    num_pointss2 = 52, 68
    roc_x2 = 50e-3
    roc_y2 = 75e-3
    k = 2 * np.pi / 860e-9
    waist0s = np.asarray((20e-6, 20e-6))
    r0_supports = waist0s * 8
    z_Rs = waist0s**2 * k / 2
    trials = (
        (0, (0, 0), (0, 0), (0, 0), (0, 0), 5e-6, (0, 0), 1),  # 0
        (0, (0, 0), (0, 0), (0, 0), (0, 0), 50e-3, (0, 0), 1),  # 1
        (20e-3, (0, 0), (0, 0), (0, 0), (0, 0), 50e-3, (0, 0), 1),  # 2
        (50e-3, (0, 0), (0, 0), (0, 0), (0, 0), 50e-3, (0, 0), 1),  # 3
        (0, (30e-6, -10e-6), (30e3, 100e3), (30e-6, -15e-6), (20e3, 80e3), 0,
         (30e-6, -10e-6), 1),  # 4
        (20e-3, (30e-6, -10e-6), (30e3, 25e3), (0, 0), (20e3, 35e3), 20e-3,
         (30e-6, -10e-6), 1),  # 5
        ((0, (0, 0), (0, 0), (0, 0), (0, 0), 0e-6, (0, 0), 1)))  # 6

    invert_kwargs = dict(max_iterations=50, tol=1e-11)
    for trial_num, trial in tuple(enumerate(trials)):
        z1, r_offsets, q_offsets, r1_centers, qs_center, z2_mean, r2_centers, r2_supports_factor = trial

        m1s = (1 + (z1 / z_Rs)**2)**0.5
        r1_supports = r0_supports * m1s
        x1, y1 = asbp.calc_xy(r1_supports, num_pointss1, r1_centers)
        Er1_theory = asbp.calc_gaussian(k, x1, y1, waist0s, z1, r_offsets,
                                        q_offsets)

        m2s_mean = (1 + (z2_mean / z_Rs)**2)**0.5
        r2_supports = r0_supports * m2s_mean * r2_supports_factor

        x2, y2 = asbp.calc_xy(r2_supports, num_pointss2, r2_centers)
        z2 = x2**2 / (2 * roc_x2) + y2**2 / (2 * roc_y2) + z2_mean
        Er2 = asbp.calc_gaussian(k, x2, y2, waist0s, z2, r_offsets, q_offsets)

        roc12_x = bvar.calc_sziklas_siegman_roc_from_waist(
            z_Rs[0], -z1, z2 - z1)
        roc12_y = bvar.calc_sziklas_siegman_roc_from_waist(
            z_Rs[1], -z1, z2 - z1)

        # calc_gaussian uses paraxial propagation, but the angles are small enough so local_xy agrees too. For
        # thoroughness, test both.
        for kz_mode in ('local_xy', 'paraxial'):
            Er1, propagator = asbp.invert_plane_to_curved_spherical_arbitrary(
                k, r1_supports, num_pointss1, Er2, z2 - z1, x2, y2, roc12_x,
                roc12_y, r1_centers, qs_center, r2_centers, kz_mode,
                invert_kwargs)
            assert Er1.shape == num_pointss1
            Er2p = propagator.apply(Er1)
            print(
                (mathx.sum_abs_sqd(Er2 - Er2p) / mathx.sum_abs_sqd(Er2))**0.5)
            assert mathx.allclose(Er2, Er2p, 1e-4), (kz_mode, trial_num)
            assert mathx.allclose(Er1, Er1_theory, 1e-4)

            if trial == trials[-1]:
                roc21_x = bvar.calc_sziklas_siegman_roc_from_waist(
                    z_Rs[0], -z2, z1 - z2)
                roc21_y = bvar.calc_sziklas_siegman_roc_from_waist(
                    z_Rs[1], -z2, z1 - z2)
                Er1 = asbp.propagate_arbitrary_curved_to_plane_spherical(
                    k, x2, y2, Er2, roc21_x, roc21_y, z1 - z2, r1_supports,
                    num_pointss1, r2_centers, qs_center, r1_centers, kz_mode,
                    invert_kwargs)

                assert mathx.allclose(Er2, propagator.apply(Er1),
                                      1e-4), trial_num
                assert mathx.allclose(Er1, Er1_theory, 1e-4)
    if 0:
        ##
        Er1_fig = asbp.plot_r_q_polar(r1_supports, Er1, r1_centers, qs_center)
        Er1_fig[0].setWindowTitle('Er1')
        Er1_theory_fig = asbp.plot_r_q_polar(r1_supports, Er1_theory,
                                             r1_centers, qs_center)
        Er1_theory_fig[0].setWindowTitle('Er1_theory')
        Er2_fig = asbp.plot_r_q_polar(r2_supports, Er2, r2_centers, qs_center)
        Er2_fig[0].setWindowTitle('Er2')
        Er1_diff_fig = asbp.plot_r_q_polar(r1_supports, Er1 - Er1_theory,
                                           r1_centers, qs_center)
        Er1_diff_fig[0].setWindowTitle('Er1 diff')
        # Er2p =\
        # asbp.propagate_plane_to_curved_spherical_arbitrary(k, r1_supports, Er1_theory, z2 - z1, x2, y2, m12x, m12y)[0]
        # Er2p_fig = asbp.plot_r_q_polar(r2_supports, Er2p, r2_centers, qs_center)
        # Er2p_fig[0].setWindowTitle('Er2p')
        Er2_diff_fig = asbp.plot_r_q_polar(r1_supports, Er2p - Er2, r1_centers,
                                           qs_center)
        Er2_diff_fig[0].setWindowTitle('Er2 diff')
        ##
        absEr1_diff_fig = asbp.plot_r_q_polar(r1_supports,
                                              abs(Er1) - abs(Er1_theory),
                                              r1_centers, qs_center)
        absEr1_diff_fig[0].setWindowTitle('abs Er1 diff')
Example #18
0
def test_profile_propagation():
    # Propagate Gaussian beam onto curved surface. Plane 0 is the waist, plane 1 is the start surface and plane 2 is the
    # final surface.
    lamb = 860e-9
    n = 1
    waist0s = np.asarray((20e-6, 20e-6))
    r0_supports = waist0s * 8

    num_pointss1 = 48, 64

    num_pointss2 = 63, 64
    roc_x2 = 50e-3
    roc_y2 = 75e-3
    k = 2 * np.pi * n / lamb
    z_Rs = waist0s**2 * k / 2

    trials = (
        # 0 - propagate from waist a short distance.
        (0, (0, 0), (0, 0), (0, 0), (0, 0), 5e-6, (0, 0)),
        # 1 - propagate from waist many Rayleighs.
        (0, (0, 0), (0, 0), (0, 0), (0, 0), 50e-3, (0, 0)),
        # 2 - propagate between two places both with significant curvature.
        (20e-3, (0, 0), (0, 0), (0, 0), (0, 0), 50e-3, (0, 0)),
        # 3 - propagate from plane to curved surface through plane.
        (50e-3, (30e-6, -10e-6), (30e3, 10e3), (50e-6, -40e-6), (30e3, 10e3),
         50e-3, (-100e-6, 50e-6)),
        # 4
        (0, (30e-6, -10e-6), (30e3, 50e3), (0, 0), (30e3, 50e3), 0, (0, 0)),
        # 5
        (20e-3, (30e-6, -10e-6), (30e3, 25e3), (0, 0), (30e3, 25e3), 20e-3,
         (0, 0)))

    for trial_num, trial in enumerate(trials):
        z1, rs_waist, qs_waist, delta_rs_center1, qs_center, z2_mean, delta_rs_center2 = trial
        kz_mode = 'local_xy' if qs_center == (0, 0) else 'paraxial'

        # Setup plane 1 (initial).
        rs_center1 = asbp.math.adjust_r(k, rs_waist, z1, qs_waist,
                                        kz_mode) + delta_rs_center1
        m1s = (1 + (z1 / z_Rs)**2)**0.5
        r1_supports = r0_supports * m1s
        x1, y1 = asbp.calc_xy(r1_supports, num_pointss1, rs_center1)
        profile1 = asbp.PlaneProfile.make_gaussian(lamb, n, waist0s,
                                                   r1_supports, num_pointss1,
                                                   rs_waist, qs_waist, 0,
                                                   rs_center1, qs_center, z1)

        # Setup plane 2 (destination).
        m2s_mean = (1 + (z2_mean / z_Rs)**2)**0.5
        rs_support2 = r0_supports * m2s_mean
        rs_center2 = asbp.math.adjust_r(k, rs_waist, z2_mean, qs_waist,
                                        kz_mode) + delta_rs_center2

        # Test propagate to plane surface 2.
        profile2_plane = profile1.propagate_to_plane(z2_mean, rs_center2,
                                                     m2s_mean / m1s, kz_mode)
        profile2_theory_plane = asbp.PlaneProfile.make_gaussian(
            lamb, n, waist0s, rs_support2, num_pointss1, rs_waist, qs_waist, 0,
            rs_center2, qs_center, z2_mean)
        assert mathx.allclose(profile2_theory_plane.Er, profile2_plane.Er,
                              1e-4)

        # Setup test at curved curved surface 2
        x2, y2 = asbp.calc_xy(rs_support2, num_pointss2, rs_center2)
        z2fun = lambda x, y: x**2 / (2 * roc_x2) + y**2 / (2 * roc_y2
                                                           ) + z2_mean
        z2 = z2fun(x2, y2)
        profile2_theory = asbp.CurvedProfile.make_gaussian(
            lamb, n, waist0s, rs_support2, num_pointss2, rs_waist, qs_waist, 0,
            rs_center2, qs_center, z2fun)

        # Test with ROCs specified.
        roc_x = bvar.calc_sziklas_siegman_roc_from_waist(z_Rs[0], -z1, z2 - z1)
        roc_y = bvar.calc_sziklas_siegman_roc_from_waist(z_Rs[1], -z1, z2 - z1)
        profile2 = profile1.propagate_to_curved(rs_support2, num_pointss2,
                                                rs_center2, z2fun, roc_x,
                                                roc_y, kz_mode)
        assert mathx.allclose(profile2_theory.Er, profile2.Er, 1e-4)

        # Test automatic determination of correct ROC.
        profile2 = profile1.propagate_to_curved(rs_support2, num_pointss2,
                                                rs_center2, z2fun, None, None,
                                                kz_mode)
        assert mathx.allclose(profile2_theory.Er, profile2.Er, 1e-3)

    ##
    if 0:
        profile1_fig = profile1.plot_r_q_polar(True)
        profile2_plane_fig = profile2_plane.plot_r_q_polar(True)
        profile2_theory_plane_fig = profile2_theory_plane.plot_r_q_polar(True)
        ##
        profile2_fig = profile2.plot_r_q_polar(True)
        profile2_theory_fig = profile2_theory.plot_r_q_polar(True)