Example #1
0
    def update_gradient_with_optimizer(self, x: Variable,
                                       optimizer: Optimizer):
        # print(type(x))

        # Gradient Clipping
        mask = (x.gradient < GRADIENT_CLIPPING_THRESHOLD).astype(int)
        mask = np.multiply(
            mask, (x.gradient > -GRADIENT_CLIPPING_THRESHOLD).astype(int))
        contra_mask = 1 - mask
        x.gradient = np.multiply(
            mask, x.gradient) + contra_mask * GRADIENT_CLIPPING_THRESHOLD

        if x.back_prop is not None:
            # which means x is an input node
            x.back_prop()

        if x.trainable:
            optimizer.update_once(x)

        if x.lchild is not None:
            self.update_gradient_with_optimizer(x.lchild, optimizer)

        if x.rchild is not None:
            self.update_gradient_with_optimizer(x.rchild, optimizer)
Example #2
0
 def set_and_update_gradient(self, x: Variable, gradient):
     assert x.gradient.shape == gradient.shape
     x.gradient = gradient
     self.update_gradient(x)