Example #1
0
def join_parts(body_without_hands,hands) :
	body=cv2.imread(body_without_hands)
	arms1=cv2.imread(hands)

	body_prt=body.copy()
	body_prt[body.shape[0]/3:body.shape[0],:,:]=255
	cv2.imwrite('body_prt.jpg',body_prt)
	prt_cnt=encContour('body_prt.jpg')
	leftindex=index_flatside(prt_cnt,"left")
	print "bodyleft",prt_cnt[leftindex,0]
	rightindex=index_flatside(prt_cnt,"right")
	print "bodyright",prt_cnt
	blank=np.zeros(arms1.shape,dtype=np.uint8)
	blank[:,:,:]=255
	arms2=arms1.copy()
	#print arms1.shape[1]
	arms1[:,arms1.shape[1]/2:arms1.shape[1]]=blank[:,arms1.shape[1]/2:arms1.shape[1]]
	arms2[:,0 : arms1.shape[1]/2]=blank[:,0 : arms1.shape[1]/2]	
	cv2.imwrite('arms1.jpg',arms1)
	cv2.imwrite('arms2.jpg',arms2)
	armsc1=encContour('arms1.jpg')
	armsc2=encContour('arms2.jpg')
	arm1index=index_flatside(armsc1,"right")
	arm2index=index_flatside(armsc2,"left")
	print "left top",armsc1[arm1index[1],0],'\nright top',armsc2[arm2index[1],0],"\nleftbody",prt_cnt[leftindex[1],0],"\nrightbody",prt_cnt[rightindex[1],0]
	armsc1[:,0]=armsc1[:,0]-armsc1[arm1index[0],0]+prt_cnt[leftindex[0],0]
	armsc2[:,0]=armsc2[:,0]-armsc2[arm2index[0],0]+prt_cnt[rightindex[0],0]
	cv2.drawContours(blank,[armsc1,armsc2,encContour(body_without_hands)],-1,(0),1)
	plt.imshow(blank)
	plt.show()
Example #2
0
def giveHeights(ref, height, args):
    rext = give_extpoints(encContour(ref))
    scaling = float(rext["bottom"][1] - rext["top"][1]) / height
    for i in args:
        print i
        xext = give_extpoints(encContour(i))
        print "Height of " + i + " is :", float(xext["bottom"][1] -
                                                xext["top"][1]) / scaling
Example #3
0
def side_fit(test, reference):
    '''
    Under process

    Inputs:
        test: side view of test image (without head)
        reference: side view of reference image (without head)

    Output:
        test: cropped and resized test image
        reference: final reference image having same height as the test image
    '''
    test_contour = encContour(test)
    reference_contour = encContour(reference)
    test = (np.zeros((test.shape[0],test.shape[1],3), np.uint8)).copy()
    reference = (np.zeros((reference.shape[0],reference.shape[1],3), np.uint8)).copy()

    cv2.drawContours(test, test_contour, -1 ,(255,255,255),1)
    cv2.drawContours(reference, reference_contour, -1 ,(255,255,255),1)

    t_l=tuple(test_contour[test_contour[:,:,0].argmin()][0])
    t_r=tuple(test_contour[test_contour[:,:,0].argmax()][0])
    t_t=tuple(test_contour[test_contour[:,:,1].argmin()][0])
    t_b=tuple(test_contour[test_contour[:,:,1].argmax()][0])
    error = (t_b[1] - t_t[1]) / 100
    test = test[t_t[1] + error :t_b[1], t_l[0]:t_r[0]]

    r_l=tuple(reference_contour[reference_contour[:,:,0].argmin()][0])
    r_r=tuple(reference_contour[reference_contour[:,:,0].argmax()][0])
    r_t=tuple(reference_contour[reference_contour[:,:,1].argmin()][0])
    r_b=tuple(reference_contour[reference_contour[:,:,1].argmax()][0])
    error = (r_b[1] - r_t[1]) / 100
    reference = reference[r_t[1] + error :r_b[1], r_l[0]:r_r[0]]

    height = 700
    test = cvt_small(test, height)
    reference = cvt_small(reference, height)

    '''
    Now divide body in 13 parts
    Reference : http://www.drawinghowtodraw.com/drawing-lessons/drawing-faces-lessons/cc-figure-drawing-anatomy-caricatures.html
    '''

    scaling = horizontal_scale(test[0:(t_b[1] - t_t[1])*1/13, 0: r_b[1] - r_t[1]],
                reference[0:(t_b[1] - t_t[1])*1/13, 0: r_b[1] - r_t[1]])

    reference = cv2.resize(reference,(int(round(reference.shape[1]*scaling)), height))
    '''
    cv2.imshow('reference',reference)
    cv2.imshow('test',test)
    cv2.waitKey(0)
    '''
    return test, reference
Example #4
0
def resize_image(imgf,imgs):
	f=encContour(imgf)
	s=encContour(imgs)
	ft=tuple(f[f[:,:,1].argmin()][0])
	fb=tuple(f[f[:,:,1].argmax()][0])
	st=tuple(s[s[:,:,1].argmin()][0])
	sb=tuple(s[s[:,:,1].argmax()][0])
	
	fh=fb[1]-ft[1]
	sh=sb[1]-st[1]
	ratio=fh/sh
	s[:,0,1]=(s[:,0,1]-st[1])*ratio+st[1]
	cv2.drawContours(imgs,s,0,(255),2)
	return imgf,imgs
Example #5
0
def ratioheight(mfront,mfrontf,mside,rimg) :
	m=encContour(mfront)
	mf=encContour(mfrontf)
	ms=encContour(mside)
	r=encContour(rimg)
	mp=give_extpoints(m)
	mfp=give_extpoints(mf)
	msp=give_extpoints(ms)
	rp=give_extpoints(r)
	heightm=mp['bottom'][1]-mp['top'][1]
	heightmf=mfp['bottom'][1]-mfp['top'][1]
	heightms=msp['bottom'][1]-msp['top'][1]
	heightr=rp['bottom'][1]-rp['top'][1]
	ratios=[float(heightm)/heightr,float(heightmf)/heightr,float(heightms)/heightr]
	return ratios
Example #6
0
def resize_model(mfront, mfrontf, mside, rimg):
    '''
	inputs:
		mfront: front view of reference model
		mfrontf: front view of reference model arms stretched
		mside: side view of reference model
		rimg: test image ( front or side )
	'''
    mf = encContour(mfront)
    ms = encContour(mside)
    mff = encContour(mfrontf)
    rimg = encContour(rimg)
    et_mf = tuple(mf[mf[:, :, 1].argmin()][0])
    eb_mf = tuple(mf[mf[:, :, 1].argmax()][0])
    et_ms = tuple(ms[ms[:, :, 1].argmin()][0])
    eb_ms = tuple(ms[ms[:, :, 1].argmax()][0])
    et_mff = tuple(mf[mf[:, :, 1].argmin()][0])
    eb_mff = tuple(mff[mff[:, :, 1].argmax()][0])
    et_rimg = tuple(rimg[rimg[:, :, 1].argmin()][0])
    eb_rimg = tuple(rimg[rimg[:, :, 1].argmax()][0])

    hf = eb_mf[1] - et_mf[1]
    hs = eb_ms[1] - et_ms[1]
    hff = eb_mff[1] - et_mff[1]
    hrimg = eb_rimg[1] - et_rimg[1]
    ratios = [float(hf) / hrimg, float(hs) / hrimg, float(hff) / hrimg]
    f = cv2.imread(mfront)
    s = cv2.imread(mside)
    ff = cv2.imread(mfrontf)
    #print f.shape,s.shape
    #exit(0)
    floating1 = float(f.shape[1]) / ratios[0]
    floating2 = float(f.shape[0]) / ratios[0]
    f1 = cv2.resize(f, (int(floating1), int(floating2)),
                    interpolation=cv2.INTER_CUBIC)
    floating1 = float(s.shape[1]) / ratios[1]
    floating2 = float(s.shape[0]) / ratios[1]
    s1 = cv2.resize(s, (int(floating1), int(floating2)),
                    interpolation=cv2.INTER_CUBIC)
    floating1 = float(ff.shape[1]) / ratios[0]
    floating2 = float(ff.shape[0]) / ratios[0]
    ff1 = cv2.resize(ff, (int(floating1), int(floating2)),
                     interpolation=cv2.INTER_CUBIC)
    cv2.imwrite('mfront.jpg', f1)
    cv2.imwrite('mside.jpg', s1)
    cv2.imwrite('mfrontf.jpg', ff1)
    return 'mfront.jpg', 'mside.jpg', 'mfrontf.jpg'
Example #7
0
def resize_model(mfront,mfrontf,mside,rimg):
	mf=encContour(mfront)
	ms=encContour(mside)
	mff=encContour(mfrontf)
	rimgc=encContour(rimg)
	et_mf = tuple(mf[mf[:, :, 1].argmin()][0])
	eb_mf = tuple(mf[mf[:, :, 1].argmax()][0])
	et_ms = tuple(ms[ms[:, :, 1].argmin()][0])
	eb_ms = tuple(ms[ms[:, :, 1].argmax()][0])
	et_mff = tuple(mf[mf[:, :, 1].argmin()][0])
	eb_mff = tuple(mff[mff[:, :, 1].argmax()][0])
	et_rimg = tuple(rimgc[rimgc[:, :, 1].argmin()][0])
	eb_rimg = tuple(rimgc[rimgc[:, :, 1].argmax()][0])

	hf=eb_mf[1]-et_mf[1]
	hs=eb_ms[1]-et_ms[1]
	hff=eb_mff[1]-et_mff[1]
	hrimg=eb_rimg[1]-et_rimg[1]
	ratios=[float(hf)/hrimg,float(hs)/hrimg,float(hff)/hrimg]
	f=mfront.copy()
	s=(mside.copy())
	ff=(mfrontf.copy())
	#print f.shape,s.shape
	#exit(0)
	floating1=float(f.shape[1])/ratios[0]
	floating2=float(f.shape[0])/ratios[0]
	f1=cv2.resize(f,(int(floating1),int(floating2)),interpolation=cv2.INTER_CUBIC)
	floating1=float(s.shape[1])/ratios[1]
	floating2=float(s.shape[0])/ratios[1]
	s1=cv2.resize(s,(int(floating1),int(floating2)),interpolation=cv2.INTER_CUBIC)
	floating1=float(ff.shape[1])/ratios[2]
	floating2=float(ff.shape[0])/ratios[2]
	ff1=cv2.resize(ff,(int(floating1),int(floating2)),interpolation=cv2.INTER_CUBIC)
	resized_mfront = f1.copy()
	resized_mfrontf = ff1.copy()
	resized_mside = s1.copy()
	#cv2.imwrite('mfront.jpg',f1)
	#cv2.imwrite('mside.jpg',s1)
	#cv2.imwrite('mfrontf.jpg',ff1)
	ratios=ratioheight(resized_mfront, resized_mfrontf, resized_mside, rimg)
	for i in ratios :
		if i < 0.93 or i >1.07 :
			return resize_model(resized_mfront, resized_mfrontf, resized_mside, rimg)
	return resized_mfront , resized_mfrontf , resized_mside
Example #8
0
def resize_model(mfront,mfrontf,mside,rimg):
	'''
	inputs:
		mfront: front view of reference model
		mfrontf: front view of reference model arms stretched
		mside: side view of reference model
		rimg: test image ( front or side )
	'''
	mf=encContour(mfront)
	ms=encContour(mside)
	mff=encContour(mfrontf)
	rimg=encContour(rimg)
	et_mf = tuple(mf[mf[:, :, 1].argmin()][0])
	eb_mf = tuple(mf[mf[:, :, 1].argmax()][0])
	et_ms = tuple(ms[ms[:, :, 1].argmin()][0])
	eb_ms = tuple(ms[ms[:, :, 1].argmax()][0])
	et_mff = tuple(mf[mf[:, :, 1].argmin()][0])
	eb_mff = tuple(mff[mff[:, :, 1].argmax()][0])
	et_rimg = tuple(rimg[rimg[:, :, 1].argmin()][0])
	eb_rimg = tuple(rimg[rimg[:, :, 1].argmax()][0])

	hf=eb_mf[1]-et_mf[1]
	hs=eb_ms[1]-et_ms[1]
	hff=eb_mff[1]-et_mff[1]
	hrimg=eb_rimg[1]-et_rimg[1]
	ratios=[float(hf)/hrimg,float(hs)/hrimg,float(hff)/hrimg]
	f=cv2.imread(mfront)
	s=cv2.imread(mside)
	ff=cv2.imread(mfrontf)
	#print f.shape,s.shape
	#exit(0)
	floating1=float(f.shape[1])/ratios[0]
	floating2=float(f.shape[0])/ratios[0]
	f1=cv2.resize(f,(int(floating1),int(floating2)),interpolation=cv2.INTER_CUBIC)
	floating1=float(s.shape[1])/ratios[1]
	floating2=float(s.shape[0])/ratios[1]
	s1=cv2.resize(s,(int(floating1),int(floating2)),interpolation=cv2.INTER_CUBIC)
	floating1=float(ff.shape[1])/ratios[0]
	floating2=float(ff.shape[0])/ratios[0]
	ff1=cv2.resize(ff,(int(floating1),int(floating2)),interpolation=cv2.INTER_CUBIC)
	cv2.imwrite('mfront.jpg',f1)
	cv2.imwrite('mside.jpg',s1)
	cv2.imwrite('mfrontf.jpg',ff1)
	return 'mfront.jpg','mside.jpg','mfrontf.jpg'
Example #9
0
def resize_model(mfront,mfrontf,mside,rimg):
	mf=encContour(mfront)
	ms=encContour(mside)
	mff=encContour(mfrontf)
	rimgc=encContour(rimg)
	et_mf = tuple(mf[mf[:, :, 1].argmin()][0])
	eb_mf = tuple(mf[mf[:, :, 1].argmax()][0])
	et_ms = tuple(ms[ms[:, :, 1].argmin()][0])
	eb_ms = tuple(ms[ms[:, :, 1].argmax()][0])
	et_mff = tuple(mf[mf[:, :, 1].argmin()][0])
	eb_mff = tuple(mff[mff[:, :, 1].argmax()][0])
	et_rimg = tuple(rimgc[rimgc[:, :, 1].argmin()][0])
	eb_rimg = tuple(rimgc[rimgc[:, :, 1].argmax()][0])
	
	hf=eb_mf[1]-et_mf[1]
	hs=eb_ms[1]-et_ms[1]
	hff=eb_mff[1]-et_mff[1]
	hrimg=eb_rimg[1]-et_rimg[1]
	ratios=[float(hf)/hrimg,float(hs)/hrimg,float(hff)/hrimg]
	f=cv2.imread(mfront)
	s=cv2.imread(mside)
	ff=cv2.imread(mfrontf)
	#print f.shape,s.shape
	#exit(0)
	floating1=float(f.shape[1])/ratios[0]
	floating2=float(f.shape[0])/ratios[0]
	f1=cv2.resize(f,(int(floating1),int(floating2)),interpolation=cv2.INTER_CUBIC)
	floating1=float(s.shape[1])/ratios[1]
	floating2=float(s.shape[0])/ratios[1]
	s1=cv2.resize(s,(int(floating1),int(floating2)),interpolation=cv2.INTER_CUBIC)
	floating1=float(ff.shape[1])/ratios[2]
	floating2=float(ff.shape[0])/ratios[2]
	ff1=cv2.resize(ff,(int(floating1),int(floating2)),interpolation=cv2.INTER_CUBIC)
	cv2.imwrite('mfront.jpg',f1)
	cv2.imwrite('mside.jpg',s1)
	cv2.imwrite('mfrontf.jpg',ff1)
	ratios=ratioheight('mfront.jpg','mfrontf.jpg','mside.jpg',rimg)
	for i in ratios :
		if i < 0.93 or i >1.07 :
			return resize_model('mfront.jpg','mfrontf.jpg','mside.jpg',rimg)
	return 'mfront.jpg','mside.jpg','mfrontf.jpg'
Example #10
0
def join_parts(body_without_hands, hands):
    body = cv2.imread(body_without_hands)
    arms1 = cv2.imread(hands)

    body_prt = body.copy()
    body_prt[body.shape[0] / 3:body.shape[0], :, :] = 255
    cv2.imwrite('body_prt.jpg', body_prt)
    prt_cnt = encContour('body_prt.jpg')
    leftindex = index_flatside(prt_cnt, "left")
    print "bodyleft", prt_cnt[leftindex, 0]
    rightindex = index_flatside(prt_cnt, "right")
    print "bodyright", prt_cnt
    blank = np.zeros(arms1.shape, dtype=np.uint8)
    blank[:, :, :] = 255
    arms2 = arms1.copy()
    #print arms1.shape[1]
    arms1[:, arms1.shape[1] / 2:arms1.shape[1]] = blank[:, arms1.shape[1] /
                                                        2:arms1.shape[1]]
    arms2[:, 0:arms1.shape[1] / 2] = blank[:, 0:arms1.shape[1] / 2]
    cv2.imwrite('arms1.jpg', arms1)
    cv2.imwrite('arms2.jpg', arms2)
    armsc1 = encContour('arms1.jpg')
    armsc2 = encContour('arms2.jpg')
    arm1index = index_flatside(armsc1, "right")
    arm2index = index_flatside(armsc2, "left")
    print "left top", armsc1[arm1index[1], 0], '\nright top', armsc2[
        arm2index[1],
        0], "\nleftbody", prt_cnt[leftindex[1],
                                  0], "\nrightbody", prt_cnt[rightindex[1], 0]
    armsc1[:, 0] = armsc1[:, 0] - armsc1[arm1index[0],
                                         0] + prt_cnt[leftindex[0], 0]
    armsc2[:, 0] = armsc2[:, 0] - armsc2[arm2index[0],
                                         0] + prt_cnt[rightindex[0], 0]
    cv2.drawContours(
        blank, [armsc1, armsc2, encContour(body_without_hands)], -1, (0), 1)
    plt.imshow(blank)
    plt.show()
Example #11
0
def plot3dHuman2 (front,arms,side,points):
	
	#Extracting enclosing contours
	s=encContour(side)
	f=encContour(front)
	
	arms1=cv2.imread(arms)
	blank=np.zeros(arms1.shape,dtype=np.uint8)
	blank[:,:,:]=255
	arms2=cv2.imread(arms)
	# imposing blank ( white) image on half right ( and then left ) of the image having both the arms.
	arms1[:,arms1.shape[1]/2:arms1.shape[1]]=blank[:,arms1.shape[1]/2:arms1.shape[1]]
	arms2[:,0 : arms1.shape[1]/2]=blank[:,0 : arms1.shape[1]/2]
	# Now arms1 and arms2 have only the left and the right arm respectively
	armsc1=encContour(arms1)
	armsc2=encContour(arms2)
	extarms1=give_extindices(armsc1)["right"]
	extarms2=give_extindices(armsc2)["left"]
	#index_flatside gives the extreme indices on the specified side of the contour with slight deviation 
	# index1 and index2 will store only the coordinates with lower y component ( i.e. topmost point )
	index1=index_flatside(armsc1,"right")[0]
	index2=index_flatside(armsc2,"left")[0]
	
	extf=give_extpoints(f)
	exts=give_extpoints(s)
	f1=f.copy()
	s1=s.copy()
	# removing that extra bracket
	f1=f1[:,0]
	s1=s1[:,0]
	#Refer the file index_flatside for its usage
	bindex1=index_flatside(f,"left",0.33)
	bindex2=index_flatside(f,"right",0.33)
	
	matplotlib.rcParams['legend.fontsize']=10
	fig=plt.figure()
	ax=fig.gca(projection='3d')
	# Changing reference (matplotlib places origin in the usual mathamatical way (not at the topmost left ))
	f1=f1[:]-[(extf["left"][0]+extf["right"][0])/2,extf["bottom"][1]]
	f1[:,1]=-f1[:,1]
	s1=s1[:]-[(exts["left"][0]+exts["right"][0])/2,exts["bottom"][1]]
	s1[:,1]=-s1[:,1]
	armsc1[:,0,1]=-armsc1[:,0,1]
	armsc2[:,0,1]=-armsc2[:,0,1]
	if len(points) != 0 :
		points[0][1]=-(points[0][1]-extf["bottom"][1])
		points[1][1]=-(points[1][1]-extf["bottom"][1])
	#Matching the topmost shoulder point ( bringing the arms to the main body )
	armsc1[:,0]=armsc1[:,0]-armsc1[index1,0]+f1[bindex1[0]]
	armsc2[:,0]=armsc2[:,0]-armsc2[index2,0]+f1[bindex2[0]]
	#Defining the vertical range of arms using the main body (The real image may not be symmetric,one arm may be slightly higher than the other )
	armsVrange=[min(f1[bindex1[1]][1],f1[bindex2[1]][1]),max(f1[bindex1[0]][1],f1[bindex2[0]][1])]
	# again removing that extra bracket for the arms
	armsc1=armsc1[:,0]
	armsc2=armsc2[:,0]
	extarms1=give_extpoints2(armsc1)
	extarms2=give_extpoints2(armsc2)
	# To get the lateral position of arms, matching the midpoint of side view at that point with the midpoint of arm
	temp=retval((f1[bindex1[0],1]+f1[bindex1[1],1])/2,s1)
	yl,yr=[0,0]
	if len(temp)==2:
		yl=(temp[0]+temp[1])/2
	temp=retval((f1[bindex2[0],1]+f1[bindex2[1],1])/2,s1)
	if len(temp)==2 :
		yr=(temp[0]+temp[1])/2
	# X,Y,Z stored the final plotting points in 3d
	X=[] ;Y=[];Z=[]
	# armsplotting decides whether to plot both the arms or not ( part plotting of arms or even plotting one arm is not supported )
	armsplotting = False
	if len(points)!=0 :
		clickrange=[points[0][1],points[0][0]]
		clickrange=sorted(clickrange,reverse=False)
		for p in clickrange :
			if p <armsVrange[1] and p > armsVrange[0] :
				print " Don't click on arms "
				exit(1)
		if clickrange[0]<armsVrange[0] and clickrange[1] > armsVrange[1] :
			armsplotting=True
	else :
		armsplotting =True
	if armsplotting :
		#Plotting arms
		theta=np.linspace(0,2*np.pi,15)
		iterator=np.linspace(extarms1["right"][0],extarms1["left"][0],50)

	
		for i in iterator :
			x1=retval2(i,armsc1)
			if len(x1)!=2 :
				continue
			
			x_a=(x1[0]+x1[1])/2
			radius = (abs(x1[1]-x1[0]))/2
			for th in theta :
				X.append(i)
				Y.append(yl+radius*np.cos(th))
				Z.append(x_a+radius*np.sin(th))
		iterator=np.linspace(extarms2["right"][0],extarms2["left"][0],50)
		for i in iterator :
			x1=retval2(i,armsc2)
			if len(x1)!=2 :
				continue
		
			x_a=(x1[0]+x1[1])/2
			radius = abs(x1[1]-x1[0])/2
			for th in theta :
				X.append(i)
				Y.append(yr+radius*np.cos(th))
				Z.append(x_a+radius*np.sin(th))

	
	points=np.array(points)
	theta=np.linspace(0,2*np.pi,30)
	if len(points) != 0 :
		t= float( points[1,1]- points[0,1])/(max(max(f1[:,1]),max(s1[:,1]))*0.01)
		iterator=np.linspace(points[0,1],points[1,1],abs(t))

	else :
		iterator=np.linspace(0,max(max(f1[:,1]),max(s1[:,1])),100)
	#For every value in iterator plotting the data points considering ellipses
	for fl in iterator:
		x1=retval(fl,f1)
		y1=retval(fl,s1)
		if len(y1) !=2 :
			continue
		if len(x1)%2 !=0 or len(x1) >5 or len(x1) == 0:
			continue
		
		x_a=(x1[0]+x1[1])/2
		y_a=(y1[0]+y1[1])/2
		a=(x1[1]-x1[0])/2
		b=(y1[1]-y1[0])/2

		for temp in x_a+a*np.cos(theta) :
			X.append(temp)
		for temp in y_a+b*np.sin(theta) :
			Y.append(temp)
			Z.append(fl)
		if len(x1) ==4 :
			
			x_a=(x1[2]+x1[3])/2
			y_a=(y1[0]+y1[1])/2
			a=(x1[2]-x1[3])/2
			b=(y1[1]-y1[0])/2
			for temp in x_a+a*np.cos(theta) :
				X.append(temp)
			for temp in y_a+b*np.sin(theta) :
				Y.append(temp)
				Z.append(fl)
	fig=plt.figure()
	ax=fig.add_subplot(111,projection='3d')
#Using wireframe plots ( please improve this : spaces between legs is not clear, may use surface plots )
	ax.plot_wireframe(X,Y,Z,rstride=10,cstride=10)
	# Create cubic bounding box to simulate equal aspect ratio
	max_range = np.array([max(X)-min(X), max(Y)-min(Y),max(Z)-min(Z)]).max()
	Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(max(X)+min(X))
	Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() + 0.5*(max(Y)+min(Y))
	Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() + 0.5*(max(Z)+min(Z))
	for xb, yb, zb in zip(Xb, Yb, Zb):
	   ax.plot([xb], [yb], [zb], 'w')
	plt.show()
Example #12
0
def ret_hscale(rimg, mimg, args):
    # getting the enclosing contours of real image and model image
    realc = encContour(rimg)
    modelc = encContour(mimg)
    extreal = give_extpoints(realc)
    extmodel = give_extpoints(modelc)
    midreal = int(0.25 * extreal["bottom"][1] + 0.75 * extreal["top"][1])
    midmodel = int(0.25 * extmodel["bottom"][1] + 0.75 * extmodel["top"][1])

    realindex = give_index_ct(realc, midreal + extreal["top"][1])
    modelindex = give_index_ct(modelc, midmodel + extmodel["top"][1])

    min = realc[realindex[0], 0, 0]
    # for real

    leftreal = realindex[0]
    k = 0
    for i in realindex:
        k += 1

    for i in range(1, len(realindex)):
        if min > realc[realindex[i], 0, 0]:

            leftreal = realindex[i]
            min = realc[realindex[i], 0, 0]
    min = modelc[modelindex[0], 0, 0]
    # for model

    leftmodel = modelindex[0]
    k = 0
    for i in modelindex:
        k += 1
    for i in range(1, len(modelindex)):
        if min > modelc[modelindex[i], 0, 0]:
            leftmodel = modelindex[i]

            min = modelc[modelindex[i], 0, 0]
#figuring out the direction on which to move to reach the shoulder
    directionreal = '+' if realc[leftreal + 1, 0, 1] + realc[
        leftreal + 2, 0, 1] + realc[leftreal + 3, 0, 1] < realc[
            leftreal, 0, 1] + realc[leftreal - 1, 0, 1] + realc[leftreal - 2,
                                                                0, 1] else '-'
    directionmodel = '+' if modelc[leftmodel + 1, 0, 1] + modelc[
        leftmodel + 2, 0, 1] + modelc[leftmodel + 3, 0, 1] < modelc[
            leftmodel, 0, 1] + modelc[leftmodel - 1, 0,
                                      1] + modelc[leftmodel - 2, 0, 1] else '-'
    # Getting the shoulder point for real image
    i = leftreal
    avr, avm = [0, 0]
    a = realc[i, 0]
    while (1):

        if directionreal == '+':
            b = realc[i + 1, 0]
            c = realc[i + 2, 0]
            d = realc[i + 3, 0]
            e = realc[i + 4, 0]
            f = realc[i + 5, 0]
            avr = [
                float(b[0] + c[0] + d[0] + e[0] + f[0]) / 5,
                float(b[1] + c[1] + d[1] + e[1] + f[1]) / 5
            ]
            i += 5
        else:
            b = realc[i - 1, 0]
            c = realc[i - 2, 0]
            d = realc[i - 3, 0]
            e = realc[i - 4, 0]
            f = realc[i - 5, 0]
            avr = [
                float(b[0] + c[0] + d[0] + e[0] + f[0]) / 5,
                float(b[1] + c[1] + d[1] + e[1] + f[1]) / 5
            ]
            i -= 5

        if avr[0] != a[0] and abs(float(avr[1] - a[1]) / (avr[0] - a[0])) < 1:
            realshoulder = a
            break
        a = avr
# Getting the shoulder point for model image
    i = leftmodel
    a = modelc[i, 0]
    while (1):
        if directionreal == '+':
            b = modelc[i + 1, 0]
            c = modelc[i + 2, 0]
            d = modelc[i + 3, 0]
            e = modelc[i + 4, 0]
            f = modelc[i + 5, 0]
            avm = [
                float(b[0] + c[0] + d[0] + e[0] + f[0]) / 5,
                float(b[1] + c[1] + d[1] + e[1] + f[1]) / 5
            ]
            i += 5
        else:
            b = modelc[i - 1, 0]
            c = modelc[i - 2, 0]
            d = modelc[i - 3, 0]
            e = modelc[i - 4, 0]
            f = modelc[i - 5, 0]
            avm = [
                float(b[0] + c[0] + d[0] + e[0] + f[0]) / 5,
                float(b[1] + c[1] + d[1] + e[1] + f[1]) / 5
            ]
            i -= 5
        if avm[0] != a[0] and abs(float(avm[1] - a[1]) / (avm[0] - a[0])) < 1:
            modelshoulder = a
            break
        a = avm
#	print realshoulder,modelshoulder

#Calculating the width of model shoulder and real shoulder
    a = give_index_ct(realc, realshoulder[1])
    print "realshoulder", realc[a[0], 0], realc[a[1], 0]

    b = give_index_ct(modelc, modelshoulder[1])
    print "modelshoulder", modelc[b[0], 0], modelc[b[1], 0]
    if len(a) % 2 != 0 or len(b) % 2 != 0:
        print "some error message"
        exit(1)
    scaling = float(realc[a[1], 0, 0] - realc[a[0], 0, 0]) / (
        modelc[b[1], 0, 0] - modelc[b[0], 0, 0])
    print scaling
    for i in args:
        x = cv2.imread(i)
        #	print x.shape,int(x.shape[1]*scaling)
        x1 = cv2.resize(x, (int(float(x.shape[1]) * scaling), x.shape[0]),
                        interpolation=cv2.INTER_CUBIC)
        cv2.imwrite('scaled_' + i, x1)
    return scaling
Example #13
0
def plot3dHuman(front, side, points):

    #Extracting enclosing contours
    s = encContour(side)
    f = encContour(front)

    # Function which gives x values for a height t and modified contour f
    def retval(t, f):
        x = []
        for i in range(0, len(f) - 1):
            a = f[:, 1][i] - t
            b = f[:, 1][i + 1] - t
            if a * b == 0:
                if a == 0:
                    x.append(f[:, 0][i])
                else:
                    x.append(f[:, 0][i + 1])
            else:
                if a * b < 0:
                    x.append((f[:, 0][i] + f[:, 0][i + 1]) / 2)
        sorted(x)
        # At this stage x has the required values but there may be some repeated values
        y = []
        for i in range(0, len(x) - 1):
            if x[i] == x[i + 1]:
                continue
            y.append(x[i])
        if len(x) is not 0:
            y.append(x[-1])
        return y


# Getting extreme points

    fl = tuple(f[f[:, :, 0].argmin()][0])
    fr = tuple(f[f[:, :, 0].argmax()][0])

    sl = tuple(s[s[:, :, 0].argmin()][0])
    sr = tuple(s[s[:, :, 0].argmax()][0])

    ft = tuple(f[f[:, :, 1].argmin()][0])
    fb = tuple(f[f[:, :, 1].argmax()][0])

    st = tuple(s[s[:, :, 1].argmin()][0])
    sb = tuple(s[s[:, :, 1].argmax()][0])
    #from height import height
    #height('man_front.jpg')
    #print ft,fb
    #print st,sb
    # manipulating the contour to set the lowest point to origin and the body in positive direction
    f1 = f
    f1 = f1[:, 0] - [fr[0] - (fl[0] + fr[0]) / 2, fb[1]]
    if len(points) != 0:
        points[:, 1] = points[:, 1] - fb[1]
        points[:, 1] = -points[:, 1]
    f1[:, 1] = -f1[:, 1]

    s1 = s
    s1 = s1[:, 0] - [sl[0] + (sl[0] + sr[0]) / 2, sb[1]]
    s1[:, 1] = -s1[:, 1]
    matplotlib.rcParams['legend.fontsize'] = 10
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    s1
    #y=np.zeros(len(f1[:,0]),dtype=np.int64)
    #ax.plot(f1[:,0],y,f1[:,1],label='front')

    #x=np.zeros(len(s1[:,0]),dtype=np.int64)
    #ax.plot(x,s1[:,0],s1[:,1],label='side')
    ax.set_aspect('equal')
    #print retval(800,f1)
    #Using 30 data points per height
    theta = np.linspace(0, 2 * np.pi, 30)
    if len(points) != 0:
        t = float(points[1, 1] -
                  points[0, 1]) / (max(max(f1[:, 1]), max(s1[:, 1])) * 0.01)
        iterator = np.linspace(points[0, 1], points[1, 1], t)
    else:
        iterator = np.linspace(0, max(max(f1[:, 1]), max(s1[:, 1])), 100)
    X = []
    Y = []
    Z = []
    #For every value in iterator plotting the data points considering ellipses
    for fl in iterator:
        x1 = retval(fl, f1)
        y1 = retval(fl, s1)
        if len(x1) % 2 != 0:
            continue
        if len(x1) == 6:
            x_a = (x1[0] + x1[1]) / 2
            y_a = (y1[0] + y1[1]) / 2
            x_a1 = (x1[4] + x1[5]) / 2
            a = (x1[1] - x1[0]) / 2
            a1 = (x1[5] - x1[4]) / 2
            b = a
            b1 = a1
            for temp in (x1[0] + x1[1]) / 2 + a * np.cos(theta):
                X.append(temp)
            for temp in (y1[0] + y1[1]) / 2 + b * np.sin(theta):
                Y.append(temp)
                Z.append(fl)
            for temp in (x1[4] + x1[5]) / 2 + a1 * np.cos(theta):
                X.append(temp)
            for temp in (y1[0] + y1[1]) / 2 + b1 * np.sin(theta):
                Y.append(temp)
                Z.append(fl)

        xf = []
        if len(x1) == 6:
            xf = [x1[2], x1[3]]
        elif len(x1) in [2, 4]:
            xf = x1
        else:
            maxdiff = 0
            d = 0
            index = -1
            while d < len(x1):
                diff = x1[d + 1] - x1[d]
                if diff > maxdiff:
                    maxdiff = diff
                    index = d
                d += 2
                xf = [x1[index], x1[index + 1]]
            try:
                if x1[index - 1] - x1[index - 2] < 1.20 * (
                        x1[index + 1] - x1[index]) and x1[index - 1] - x1[
                            index - 2] > 0.80 * (x1[index + 1] - x1[index]):
                    xf = x1[index - 2:index + 2]
                    x1 = xf
                elif x1[index + 3] - x1[index + 2] < 1.20 * (
                        x1[index + 1] - x1[index]) and x1[index + 3] - x1[
                            index + 2] > 0.80 * (x1[index + 1] - x1[index]):
                    xf = x1[index:index + 4]
                    x1 = xf
            except IndexError:
                pass
    #	print len(x1),len(y1)
        if xf == []:
            continue
        x_a = (xf[1] + xf[0]) / 2
        y_a = (y1[0] + y1[1]) / 2
        a = (xf[1] - xf[0]) / 2
        b = (y1[1] - y1[0]) / 2
        #print y1,b
        for temp in x_a + a * np.cos(theta):
            X.append(temp)
        for temp in y_a + b * np.sin(theta):
            Y.append(temp)
            Z.append(fl)

        if (len(x1) == 4):
            a = (x1[3] - x1[2]) / 2
            x_a = (x1[3] + x1[2]) / 2
            y_a = (y1[0] + y1[1]) / 2
            for temp in x_a + a * np.cos(theta):
                X.append(temp)
            for temp in y_a + b * np.sin(theta):
                Y.append(temp)
                Z.append(fl)
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    #print len(X),len(Y),len(Z)
    #Using wireframe plots ( please improve this : spaces between legs is not clear, may use surface plots )
    ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
    # Create cubic bounding box to simulate equal aspect ratio
    max_range = np.array([max(X) - min(X),
                          max(Y) - min(Y),
                          max(Z) - min(Z)]).max()
    Xb = 0.5 * max_range * np.mgrid[
        -1:2:2, -1:2:2, -1:2:2][0].flatten() + 0.5 * (max(X) + min(X))
    Yb = 0.5 * max_range * np.mgrid[
        -1:2:2, -1:2:2, -1:2:2][1].flatten() + 0.5 * (max(Y) + min(Y))
    Zb = 0.5 * max_range * np.mgrid[
        -1:2:2, -1:2:2, -1:2:2][2].flatten() + 0.5 * (max(Z) + min(Z))
    for xb, yb, zb in zip(Xb, Yb, Zb):
        ax.plot([xb], [yb], [zb], 'w')
    plt.show()
Example #14
0
def plot3dHuman2(front, arms, side, points):

    #Extracting enclosing contours
    s = encContour(side)
    f = encContour(front)
    #armsc=encContour(arms)

    # arms has both the arms so encContour would give the bigger contour but we want both the contours. Dividing the image into two and then using encContour for both the images

    arms1 = cv2.imread(arms)
    blank = np.zeros(arms1.shape, dtype=np.uint8)
    blank[:, :, :] = 255
    arms2 = cv2.imread(arms)
    #print arms1.shape[1]
    arms1[:, arms1.shape[1] / 2:arms1.shape[1]] = blank[:, arms1.shape[1] /
                                                        2:arms1.shape[1]]
    arms2[:, 0:arms1.shape[1] / 2] = blank[:, 0:arms1.shape[1] / 2]
    armsc1 = encContour(arms1)
    armsc2 = encContour(arms2)
    extarms1 = give_extindices(armsc1)["right"]
    extarms2 = give_extindices(armsc2)["left"]
    index1 = index_flatside(armsc1, "right")[0]
    index2 = index_flatside(armsc2, "left")[0]
    # Getting extreme points
    '''
	fl=tuple(f[f[:,:,0].argmin()][0])
	fr=tuple(f[f[:,:,0].argmax()][0])
	 
	sl=tuple(s[s[:,:,0].argmin()][0])
	sr=tuple(s[s[:,:,0].argmax()][0])

	ft=tuple(f[f[:,:,1].argmin()][0])
	fb=tuple(f[f[:,:,1].argmax()][0])

	st=tuple(s[s[:,:,1].argmin()][0])
	sb=tuple(s[s[:,:,1].argmax()][0])
	'''
    extf = give_extpoints(f)
    exts = give_extpoints(s)
    f1 = f.copy()
    s1 = s.copy()
    f1 = f1[:, 0]
    s1 = s1[:, 0]
    bindex1 = index_flatside(f, "left", 0.33)
    bindex2 = index_flatside(f, "right", 0.33)

    matplotlib.rcParams['legend.fontsize'] = 10
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    # Changing reference
    f1 = f1[:] - [(extf["left"][0] + extf["right"][0]) / 2, extf["bottom"][1]]
    f1[:, 1] = -f1[:, 1]
    s1 = s1[:] - [(exts["left"][0] + exts["right"][0]) / 2, exts["bottom"][1]]
    s1[:, 1] = -s1[:, 1]
    armsc1[:, 0, 1] = -armsc1[:, 0, 1]
    armsc2[:, 0, 1] = -armsc2[:, 0, 1]
    if len(points) != 0:
        #print points,fb[1]
        points[0][1] = -(points[0][1] - extf["bottom"][1])
        points[1][1] = -(points[1][1] - extf["bottom"][1])

    #print points

#Matching the topmost shoulder point ( bringing the arms to the main body )
    armsc1[:, 0] = armsc1[:, 0] - armsc1[index1, 0] + f1[bindex1[0]]
    armsc2[:, 0] = armsc2[:, 0] - armsc2[index2, 0] + f1[bindex2[0]]
    armsVrange = [
        min(f1[bindex1[1]][1], f1[bindex2[1]][1]),
        max(f1[bindex1[0]][1], f1[bindex2[0]][1])
    ]
    armsc1 = armsc1[:, 0]
    armsc2 = armsc2[:, 0]
    extarms1 = give_extpoints2(armsc1)
    extarms2 = give_extpoints2(armsc2)
    temp = retval((f1[bindex1[0], 1] + f1[bindex1[1], 1]) / 2, s1)
    yl, yr = [0, 0]
    if len(temp) == 2:
        yl = (temp[0] + temp[1]) / 2
    temp = retval((f1[bindex2[0], 1] + f1[bindex2[1], 1]) / 2, s1)
    if len(temp) == 2:
        yr = (temp[0] + temp[1]) / 2
    X = []
    Y = []
    Z = []
    armsplotting = False
    clickrange = [points[0][1], points[0][0]]
    clickrange = sorted(clickrange, reverse=False)
    for p in clickrange:
        if p < armsVrange[1] and p > armsVrange[0]:
            print " Don't click on arms "
            exit(1)
    if clickrange[0] < armsVrange[0] and clickrange[1] > armsVrange[1]:
        armsplotting = True

    if armsplotting:
        #Plotting arms
        theta = np.linspace(0, 2 * np.pi, 15)
        iterator = np.linspace(extarms1["right"][0], extarms1["left"][0], 50)

        for i in iterator:
            x1 = retval2(i, armsc1)
            #print x1
            if len(x1) != 2:
                continue

            x_a = (x1[0] + x1[1]) / 2
            radius = (abs(x1[1] - x1[0])) / 2
            for th in theta:
                X.append(i)
                Y.append(yl + radius * np.cos(th))
                Z.append(x_a + radius * np.sin(th))
        iterator = np.linspace(extarms2["right"][0], extarms2["left"][0], 50)
        for i in iterator:
            x1 = retval2(i, armsc2)
            if len(x1) != 2:
                #print x1
                continue

            x_a = (x1[0] + x1[1]) / 2
            radius = abs(x1[1] - x1[0]) / 2
            for th in theta:
                X.append(i)
                Y.append(yr + radius * np.cos(th))
                Z.append(x_a + radius * np.sin(th))

    points = np.array(points)
    theta = np.linspace(0, 2 * np.pi, 30)
    if len(points) != 0:
        t = float(points[1, 1] -
                  points[0, 1]) / (max(max(f1[:, 1]), max(s1[:, 1])) * 0.01)
        iterator = np.linspace(points[0, 1], points[1, 1], abs(t))

    else:
        iterator = np.linspace(0, max(max(f1[:, 1]), max(s1[:, 1])), 100)
#For every value in iterator plotting the data points considering ellipses
    for fl in iterator:
        x1 = retval(fl, f1)
        y1 = retval(fl, s1)
        if len(y1) != 2:
            continue
        if len(x1) % 2 != 0 or len(x1) > 5 or len(x1) == 0:
            continue

        x_a = (x1[0] + x1[1]) / 2
        y_a = (y1[0] + y1[1]) / 2
        a = (x1[1] - x1[0]) / 2
        b = (y1[1] - y1[0]) / 2

        for temp in x_a + a * np.cos(theta):
            X.append(temp)
        for temp in y_a + b * np.sin(theta):
            Y.append(temp)
            Z.append(fl)
        if len(x1) == 4:

            x_a = (x1[2] + x1[3]) / 2
            y_a = (y1[0] + y1[1]) / 2
            a = (x1[2] - x1[3]) / 2
            b = (y1[1] - y1[0]) / 2
            #print y1,b
            for temp in x_a + a * np.cos(theta):
                X.append(temp)
            for temp in y_a + b * np.sin(theta):
                Y.append(temp)
                Z.append(fl)
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    #Using wireframe plots ( please improve this : spaces between legs is not clear, may use surface plots )
    ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
    # Create cubic bounding box to simulate equal aspect ratio
    max_range = np.array([max(X) - min(X),
                          max(Y) - min(Y),
                          max(Z) - min(Z)]).max()
    Xb = 0.5 * max_range * np.mgrid[
        -1:2:2, -1:2:2, -1:2:2][0].flatten() + 0.5 * (max(X) + min(X))
    Yb = 0.5 * max_range * np.mgrid[
        -1:2:2, -1:2:2, -1:2:2][1].flatten() + 0.5 * (max(Y) + min(Y))
    Zb = 0.5 * max_range * np.mgrid[
        -1:2:2, -1:2:2, -1:2:2][2].flatten() + 0.5 * (max(Z) + min(Z))
    for xb, yb, zb in zip(Xb, Yb, Zb):
        ax.plot([xb], [yb], [zb], 'w')
    plt.show()
Example #15
0
def disint(inpf, inps):
	'''
	inputs:
		inpf: input front image file
		inps: input side image file
	output:
		enclosing contour of:
			1. head
			2. body without head
			3. side view of head
			4. body without head side view
			5. hands(front view)
			6. body without hands(front view)
	'''
	imgf=cv2.imread(inpf)
	imgs=cv2.imread(inps)
	cont_f=encContour(inpf)
	cont_s=encContour(inps)
	

#getting extreme points

	l=tuple(cont_f[cont_f[:,:,0].argmin()][0])
	r=tuple(cont_f[cont_f[:,:,0].argmax()][0])
	t=tuple(cont_f[cont_f[:,:,1].argmin()][0])
	b=tuple(cont_f[cont_f[:,:,1].argmax()][0])
	ls=tuple(cont_s[cont_s[:,:,0].argmin()][0])
	rs=tuple(cont_s[cont_s[:,:,0].argmax()][0])
	ts=tuple(cont_s[cont_s[:,:,1].argmin()][0])
	bs=tuple(cont_s[cont_s[:,:,1].argmax()][0])
	length=r[0]-l[0]
	ran=np.linspace(0,b[1],200)
	for i in range(0,200):
		if i==0:
			continue
		ran[i]=b[1]-ran[i]

	c=0
	z=0
	X=[]
	for i in ran:
		x11=retval(i,cont_f,0)     #0 for y-coordinate
		if z==1:
			break
		if len(x11)==2 and c==0:
			wl=x11[1]-x11[0]
			c=1
		if len(x11)==2 and c==1:
			nl=x11[1]-x11[0]
			if nl<0.65*wl:
				X.append([x11[0],b[1]-i])
				X.append([x11[1],b[1]-i])
				z=1
				break
	imgf1=imgf
	imgs1=imgs
	h,w,d=imgf.shape
	h2,w2,d2=imgs.shape
	img1=np.zeros((h,w,d), dtype=np.uint8)
	img1[:,:]=[255,255,255]
	img2=np.zeros((h,w,d), dtype=np.uint8)
	img2[:,:]=[255,255,255]
	img2[0:int(i),:]=imgf1[0:int(i),:]			#projecting the head in blank image
	imgf1[0:int(i),:]=img1[0:int(i),:]			#removing the head from copy of image
	cv2.imwrite('head.jpg', img2)
	cv2.imwrite('body_without_head.jpg', imgf1)
	dist=int(i-t[1])
	img5=np.zeros((h2,w2,d2), dtype=np.uint8)
	img5[:,:]=[255,255,255]
	img6=np.zeros((h2,w2,d2), dtype=np.uint8)
	img6[:,:]=[255,255,255]
	img6[0:ts[1]+dist,:]=imgs1[0:ts[1]+dist,:]			#projecting the head in blank image
	imgs1[0:ts[1]+dist,:]=img5[0:ts[1]+dist,:]
	cv2.imwrite('head_side_view.jpg', img6)
	cv2.imwrite('side_view_without_head.jpg', imgs1)

	#cv2.imshow(img2, 'head')
	Y=[]
	height,width,dim=imgf.shape
#for hands
	a=0
	b=0
	ran2=np.linspace(1,r[0],200)
	for i in ran2:
		yp=retval(i-1,cont_f,1)
		y=retval(i,cont_f,1)
		if len(yp)==2 and a==0:
			p_slope=y[0]-yp[0]
			a=1									#comparing slopes
			continue
		elif len(yp)==2 and len(y)==2 and a==1:
			#print len(yp)
			slope=y[1]-yp[1]
			if p_slope!=0:
				b=1
				ratio=slope/p_slope
			p_slope=slope
			
		else:
			continue
		if b==1 and ratio>1.2:
			Y.append([i,y[1]])
			Y.append([width-i,y[1]])
			Y.append([i,y[0]])
			Y.append([width-i,y[0]])
			break
	#print Y
	imgf2=cv2.imread(inpf)
	img3=np.zeros((height,width,dim), dtype=np.uint8)
	img3[:,:]=[255,255,255]
	img4=np.zeros((height,width,dim), dtype=np.uint8)
	img4[:,:]=[255,255,255]
	img4[:,0:int(i)]=imgf2[:,0:int(i)]
	img4[:,int(width-i):int(width)]=imgf2[:,int(width-i):int(width)]			#projecting hands in blank image
	imgf2[:,0:int(i)]=img3[:,0:int(i)]											#removing hands from copy of original image
	imgf2[:,int(width-i):int(width)]=img3[:,int(width-i):int(width)]			#also taking the mirror image of one hand
	cv2.imwrite('hands.jpg', img4)
	cv2.imwrite('body_without_hands.jpg', imgf2)
	img4=cv2.imread('hands.jpg')
	imgf2=cv2.imread('body_without_hands.jpg')
	#plt.imshow(img4)
	#plt.show()
	#plt.imshow(imgf2)
	#plt.show()
	return 'head.jpg', 'body_without_head.jpg', 'head_side_view.jpg', 'side_view_without_head.jpg', 'hands.jpg', 'body_without_hands.jpg';
Example #16
0
def disint_hum(inpf):
	imgf=cv2.imread(inpf)
	#imgs=cv2.imread(inps)
	cont_f=encContour(inpf)
	#cont_s=encContour(inps)
	

	#getting extreme points

	l=tuple(cont_f[cont_f[:,:,0].argmin()][0])
	r=tuple(cont_f[cont_f[:,:,0].argmax()][0])
	t=tuple(cont_f[cont_f[:,:,1].argmin()][0])
	b=tuple(cont_f[cont_f[:,:,1].argmax()][0])
	#ls=tuple(cont_s[cont_s[:,:,0].argmin()][0])
	#rs=tuple(cont_s[cont_s[:,:,0].argmax()][0])
	#ts=tuple(cont_s[cont_s[:,:,1].argmin()][0])
	#bs=tuple(cont_s[cont_s[:,:,1].argmax()][0])
	hi=b[1]-t[1]
	p=t[1]+0.4*hi
	x=retval(p,cont_f,0)
	ran=np.linspace(t[1],p,200)
	for i in range(0,200):
		ran[i]=p-ran[i]
		ran[i]=ran[i]+t[1]
	
	Y=[]
	a=0
	b=0
	#sorted(ran,reverse=True)
	for i in ran:
		#i=-i
		#i=p+i
		if i==0:
			continue
		yp=retval(i-1,cont_f,0)
		y=retval(i,cont_f,0)
		if len(yp)==2 and a==0:
			p_slope=yp[0]-y[0]
			a=1									#comparing slopes
			continue
		elif len(yp)==2 and len(y)==2 and a==1:
			#print len(yp)
			slope=yp[0]-y[0]
			
			if p_slope!=0:
				b=1
				ratio=float(slope)/p_slope
			p_slope=slope
			
		else:
			continue
		if b==1 and ratio>1.5:
			Y.append(y[0])
			Y.append(y[1])
			break		
	imgf2=cv2.imread(inpf)
	height,width,dim=imgf2.shape
	img3=np.zeros((height,width,dim), dtype=np.uint8)
	img3[:,:]=[255,255,255]
	img4=np.zeros((height,width,dim), dtype=np.uint8)
	img4[:,:]=[255,255,255]
	img4[:,0:int(Y[0])]=imgf2[:,0:int(Y[0])]
	img4[:,int(Y[1]):int(width)]=imgf2[:,int(Y[1]):int(width)]			#projecting hands in blank image
	imgf2[:,0:int(Y[0])]=img3[:,0:int(Y[0])]											#removing hands from copy of original image
	imgf2[:,int(Y[1]):int(width)]=img3[:,int(Y[1]):int(width)]			#also taking the mirror image of one hand
	cv2.imwrite('handsi.jpg', img4)
	#plt.imshow(img4)
	#plt.show()
	cv2.imwrite('body_without_handsi.jpg', imgf2)
	#plt.imshow(imgf2)
	#plt.show()
	
	#for cutting head
	ran2=np.linspace(l[0],r[0],300)
	q=0
	Z=[]
	for i in range(0,300):
		if i==0:
			continue
		z=retval(ran2[i],cont_f,1)
		zp=retval(ran2[i-1],cont_f,1)
		if a==0:
			p_slope=z[0]-zp[0]
			a=1
		elif a==1:
			slope=z[0]-zp[0]
			ratio=p_slope/slope
			p_slope=slope
		if ratio>1.2:
			Z.append(z[0])
			w=ran2[i]
			break
			
	imgf2=cv2.imread(inpf)
	img1=np.zeros((height,width,dim), dtype=np.uint8)
	img1[:,:]=[255,255,255]
	img2=np.zeros((height,width,dim), dtype=np.uint8)
	img2[:,:]=[255,255,255]
	img2[0:int(Z[0]),:]=imgf[0:int(Z[0]),:]			
	imgf[0:int(Z[0]),:]=img1[0:int(Z[0]),:]											
	cv2.imwrite('headi.jpg', img2)
	#plt.imshow(img4)
	#plt.show()
	cv2.imwrite('body_without_headi.jpg', imgf)
	#plt.imshow(imgf2)
	#plt.show()
	
	return 'handsi.jpg','body_without_handsi.jpg','head.jpg','body_without_headi.jpg' 
Example #17
0
#from resize_model import resize_model
import cv2
from plot3d import plot3dHuman2
from plot3d import plot3dHuman
from ret2Val import ret2Val
from resize_model import resize_model
from ret_hscale import ret_hscale
from outer import encContour
from cvt_small import cvt_small
'''
 This is the test file of ret_hscale
 assuming that the real image is girl_front.jpg (as the hands down image of man.jpg was not available :P ) and model image is mfront.jpg
'''
#resize_model('man_front.jpg','man_frontf.jpg','man_side.jpg','girl_front.jpg')
#a=ret2Val('mfront.jpg')
#ret_hscale('girl_front.jpg','mfront.jpg',('mfront.jpg','mfrontf.jpg'))
#plot3dHuman2('body_without_hands.jpg','hands.jpg','man_side.jpg',[])

#from outer import encContour
image = cv2.imread('x1.jpg')
resized_image = cvt_small(image,800)
#y=encContour('P_20160618_001210.jpg')
contour_of_resized_image = encContour(resized_image)
cv2.drawContours(resized_image, contour_of_resized_image, -1 ,(255),2)
cv2.imshow('final',resized_image)
cv2.waitKey(0)
Example #18
0
def plot3dHuman2 (front,arms,side,points):
	
	#Extracting enclosing contours
	s=encContour(side)
	f=encContour(front)
	#armsc=encContour(arms)
	
	# arms has both the arms so encContour would give the bigger contour but we want both the contours. Dividing the image into two and then using encContour for both the images
	
	arms1=cv2.imread(arms)
	blank=np.zeros(arms1.shape,dtype=np.uint8)
	blank[:,:,:]=255
	arms2=cv2.imread(arms)
	#print arms1.shape[1]
	arms1[:,arms1.shape[1]/2:arms1.shape[1]]=blank[:,arms1.shape[1]/2:arms1.shape[1]]
	arms2[:,0 : arms1.shape[1]/2]=blank[:,0 : arms1.shape[1]/2]
# Uncomment this	
	cv2.imwrite('arms1.jpg',arms1)
	cv2.imwrite('arms2.jpg',arms2)
	armsc1=encContour('arms1.jpg')
	armsc2=encContour('arms2.jpg')
	extarms1=give_extpoints(armsc1)
	extarms2=give_extpoints(armsc2)
	trpoint=extarms1["right"]
	tlpoint=extarms2["left"]
	trindex=give_index_ct(armsc1,trpoint[1])
	tlindex=give_index_ct(armsc2,tlpoint[1])
	'''
	if len(trindex)!=2 or len(tlindex)!=2 :
		print "Debug....."
		exit(1)
	trindex=trindex[1] if armsc1[trindex[1],0,0]>armsc1[trindex[0],0,0] else trindex[0]
	tlindex=tlindex[0] if armsc1[tlindex[0],0,0]<armsc1[tlindex[1],0,0] else tlindex[1]
	'''
	mini=tlindex[0]
	maxi=trindex[0]
	if len(trindex) >1:
		for temp in trindex :
			if armsc1[maxi,0,0] < armsc1[temp,0,0] :
				maxi=temp
		trindex=maxi
	if len(tlindex) >1 :
		for temp in tlindex :
			if armsc2[mini,0,0] > armsc2[temp,0,0] :
				mini=temp
		tlindex=mini
	
	if armsc1[trindex+1,0,1] < armsc1[trindex,0,1] :
		while armsc1[trindex+1,0,0] == armsc1[trindex,0,0] :
			trindex+=1
	elif armsc1[trindex-1,0,1] < armsc1[trindex,0,1] :
		while armsc1[trindex-1,0,0] ==armsc1[trindex,0,0] :
			trindex-=1
	else :
		print "Consider more pixels"
		exit(1)
	
	if armsc2[tlindex+1,0,1] < armsc2[tlindex,0,1] :
		while armsc2[tlindex+1,0,0] == armsc2[tlindex,0,0] :
			tlindex+=1
	elif armsc2[tlindex-1,0,1] < armsc2[tlindex,0,1] :
		while armsc2[tlindex-1,0,0] ==armsc2[tlindex,0,0] :
			tlindex-=1
	else :
		print "Consider more pixels"
		exit(1)
	'''
	extfront=give_extpoints(f)
	x1=extfront["left"]
	x2=extfront["right"]
	
	armsVrange=[]
	index1=give_index_ct(f,x1[1])
	index2=give_index_ct(f,x2[1])
	if len(index1) != 2 or len(index2) !=2 :
		print "debug...."
		exit(1)
	indexl=index1[0] if f[index1[0],0,0]<f[index1[1],0,0] else index1[1]
	indexr=index2[0] if f[index2[0],0,0]>f[index2[1],0,0] else index2[1]
	g=False
	indexleft=[]
	indexright=[]
	for temp in [indexl,indexr] :
		t1=temp
		t2=temp
		i=False
		k=False
		while i==k :
			i=not i
			if f[t1+1,0,0]==f[t1,0,0] :
				if i is not k :
					k=i
				t1=t1+1
			if f[t2-1,0,0]==f[t2,0,0] :
				if i is not k :
					k=i
				t2=t2 -1
		if not g :
			if f[t1,0,0] > f[t2,0,0] :
				indexleft=[t2,t1]
			else :
				indexleft=[t1,t2]
		else :
			if f[t1,0,0] > f[t2,0,0] :
				indexright=[t2,t1]
			else :
				indexright=[t1,t2]
		g= not g
	'''
# Getting extreme points
	fl=tuple(f[f[:,:,0].argmin()][0])
	fr=tuple(f[f[:,:,0].argmax()][0])
	 
	sl=tuple(s[s[:,:,0].argmin()][0])
	sr=tuple(s[s[:,:,0].argmax()][0])

	ft=tuple(f[f[:,:,1].argmin()][0])
	fb=tuple(f[f[:,:,1].argmax()][0])

	st=tuple(s[s[:,:,1].argmin()][0])
	sb=tuple(s[s[:,:,1].argmax()][0])
	#from height import height
	#height('man_front.jpg')
	#print ft,fb
	#print st,sb
# manipulating the contour to set the lowest point to origin and the body in positive direction
	f1=f
	f1=f1[:,0]-[fr[0]-(fl[0]+fr[0])/2,fb[1]]

	if len(points) != 0 :
		print points,fb[1]
		points[:,1]=points[:,1]-fb[1]
		points[:,1]=-points[:,1]
	#print points[:,1]
	f1[:,1]=-f1[:,1]
	
	s1=s
	s1=s1[:,0]-[sl[0]+(sl[0]+sr[0])/2,sb[1]]
	s1[:,1]=-s1[:,1]
	matplotlib.rcParams['legend.fontsize']=10
	fig=plt.figure()
	ax=fig.gca(projection='3d')
	s1
	#y=np.zeros(len(f1[:,0]),dtype=np.int64)
	#ax.plot(f1[:,0],y,f1[:,1],label='front')

	#x=np.zeros(len(s1[:,0]),dtype=np.int64)
	#ax.plot(x,s1[:,0],s1[:,1],label='side')
	ax.set_aspect('equal')
	#print retval(800,f1)
	
# .......................added!...........................
	extfront=give_extpoints2(f1)
	
	x1=extfront["left"]
	x2=extfront["right"]
	
	index1=give_index_ct2(f1,x1[1])
	index2=give_index_ct2(f1,x2[1])
	if len(index1) != 2 or len(index2) !=2 :
		print "debug...."
		exit(1)
	indexl=index1[0] if f1[index1[0],0]<f1[index1[1],0] else index1[1]
	indexr=index2[0] if f1[index2[0],0]>f1[index2[1],0] else index2[1]
	g=False
	indexleft=[]
	indexright=[]
	for temp in [indexl,indexr] :
		t1=temp
		t2=temp
		i=False
		k=False
		while i==k :
			i=not i
			if f1[t1+1,0]==f1[t1,0] :
				if i is not k :
					k=i
				t1=t1+1
			if f1[t2-1,0]==f1[t2,0] :
				if i is not k :
					k=i
				t2=t2 -1
		if not g :
			if f1[t1,1] < f1[t2,1] :
				indexleft=[t1,t2]
			else :
				indexleft=[t2,t1]
		else :
			if f1[t1,1] < f1[t2,1] :
				indexright=[t1,t2]
			else :
				indexright=[t2,t1]
		g= not g
	z_al=(f1[indexleft[0],1]+f1[indexleft[1],1])/2
	temp=retval(z_al,s1)
	y_al=(temp[0]+temp[1])/2
	z_ar=(f1[indexright[0],1]+f1[indexright[1],1])/2
	temp=retval(z_ar,s1)
	y_ar=(temp[0]+temp[1])/2
#Matching the topmost shoulder point ( bringing the arms to the main body )
	armsc1=armsc1[:,0]-armsc1[trindex,0]+f1[indexleft[1]]
	armsc2=armsc2[:,0]-armsc2[tlindex,0]+f1[indexright[1]]
	armsVrange=[min(f1[indexleft[0]][1],f1[indexright[0]][1]),max(f1[indexleft[1]][1],f1[indexright[1]][1])]
	extarms1=give_extpoints2(armsc1)
	extarms2=give_extpoints2(armsc2)
	X=[] ;Y=[];Z=[]
	armsplotting = True
	for p in points :
		if p[1] <armsVrange[1] and p[1] > armsVrange[0] :
			armsplotting=False
			print " Don't click on arms "
	if armsplotting :
#Plotting arms
		theta=np.linspace(0,2*np.pi,15)
		iterator=np.linspace(extarms1["right"][0],extarms1["left"][0],20)

	
		for i in iterator :
			x1=retval2(i,armsc1)
			#print x1
			if len(x1)!=2 :
				continue
			
			x_a=(x1[0]+x1[1])/2
			radius = abs(x1[1]-x1[0])
			for th in theta :
				X.append(i)
				Y.append(y_al+radius*np.cos(th))
				Z.append(x_a+radius*np.sin(th))
		iterator=np.linspace(extarms2["right"][0],extarms2["left"][0],20)
		for i in iterator :
			x1=retval2(i,armsc2)
			if len(x1)!=2 :
				#print x1
				continue
		
			x_a=(x1[0]+x1[1])/2
			radius = abs(x1[1]-x1[0])
			#print radius
			for th in theta :
				X.append(i)
				Y.append(y_ar+radius*np.cos(th))
				Z.append(x_a+radius*np.sin(th))

#Using 30 data points per height 
	
	
	theta=np.linspace(0,2*np.pi,30)
	if len(points) != 0 :
		t= float( points[1,1]- points[0,1])/(max(max(f1[:,1]),max(s1[:,1]))*0.01)
		iterator=np.linspace(points[0,1],points[1,1],abs(t))
		#iterator=[ int (k) for k in iterator ]
		
	#	print points,points[0,1],points[1,1],iterator
	else :
		iterator=np.linspace(0,max(max(f1[:,1]),max(s1[:,1])),100)
#For every value in iterator plotting the data points considering ellipses
	for fl in iterator:
		x1=retval(fl,f1)
		y1=retval(fl,s1)
		if len(y1) !=2 :
			continue
		if len(x1)%2 !=0 or len(x1) >5 or len(x1) == 0:
			continue
		
		x_a=(x1[0]+x1[1])/2
		y_a=(y1[0]+y1[1])/2
		a=(x1[1]-x1[0])/2
		b=(y1[1]-y1[0])/2
		#print a,b
		#print y1,b
		for temp in x_a+a*np.cos(theta) :
			X.append(temp)
		for temp in y_a+b*np.sin(theta) :
			Y.append(temp)
			Z.append(fl)
		if len(x1) ==4 :
			
			x_a=(x1[2]+x1[3])/2
			y_a=(y1[0]+y1[1])/2
			a=(x1[2]-x1[3])/2
			b=(y1[1]-y1[0])/2
			#print y1,b
			for temp in x_a+a*np.cos(theta) :
				X.append(temp)
			for temp in y_a+b*np.sin(theta) :
				Y.append(temp)
				Z.append(fl)
	fig=plt.figure()
	ax=fig.add_subplot(111,projection='3d')
	#print len(X),len(Y),len(Z)
#Using wireframe plots ( please improve this : spaces between legs is not clear, may use surface plots )
	ax.plot_wireframe(X,Y,Z,rstride=10,cstride=10)
	# Create cubic bounding box to simulate equal aspect ratio
	max_range = np.array([max(X)-min(X), max(Y)-min(Y),max(Z)-min(Z)]).max()
	Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(max(X)+min(X))
	Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() + 0.5*(max(Y)+min(Y))
	Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() + 0.5*(max(Z)+min(Z))
	for xb, yb, zb in zip(Xb, Yb, Zb):
	   ax.plot([xb], [yb], [zb], 'w')
	plt.show()
Example #19
0
def disint_hum(inpf):
    imgf = cv2.imread(inpf)
    #imgs=cv2.imread(inps)
    cont_f = encContour(inpf)
    #cont_s=encContour(inps)

    #getting extreme points

    l = tuple(cont_f[cont_f[:, :, 0].argmin()][0])
    r = tuple(cont_f[cont_f[:, :, 0].argmax()][0])
    t = tuple(cont_f[cont_f[:, :, 1].argmin()][0])
    b = tuple(cont_f[cont_f[:, :, 1].argmax()][0])
    #ls=tuple(cont_s[cont_s[:,:,0].argmin()][0])
    #rs=tuple(cont_s[cont_s[:,:,0].argmax()][0])
    #ts=tuple(cont_s[cont_s[:,:,1].argmin()][0])
    #bs=tuple(cont_s[cont_s[:,:,1].argmax()][0])
    hi = b[1] - t[1]
    p = t[1] + 0.4 * hi
    x = retval(p, cont_f, 0)
    ran = np.linspace(t[1], p, 200)
    for i in range(0, 200):
        ran[i] = p - ran[i]
        ran[i] = ran[i] + t[1]

    Y = []
    a = 0
    b = 0
    #sorted(ran,reverse=True)
    for i in ran:
        #i=-i
        #i=p+i
        if i == 0:
            continue
        yp = retval(i - 1, cont_f, 0)
        y = retval(i, cont_f, 0)
        if len(yp) == 2 and a == 0:
            p_slope = yp[0] - y[0]
            a = 1  #comparing slopes
            continue
        elif len(yp) == 2 and len(y) == 2 and a == 1:
            #print len(yp)
            slope = yp[0] - y[0]

            if p_slope != 0:
                b = 1
                ratio = float(slope) / p_slope
            p_slope = slope

        else:
            continue
        if b == 1 and ratio > 1.5:
            Y.append(y[0])
            Y.append(y[1])
            break
    imgf2 = cv2.imread(inpf)
    height, width, dim = imgf2.shape
    img3 = np.zeros((height, width, dim), dtype=np.uint8)
    img3[:, :] = [255, 255, 255]
    img4 = np.zeros((height, width, dim), dtype=np.uint8)
    img4[:, :] = [255, 255, 255]
    img4[:, 0:int(Y[0])] = imgf2[:, 0:int(Y[0])]
    img4[:, int(Y[1]):int(width)] = imgf2[:, int(Y[1]):int(
        width)]  #projecting hands in blank image
    imgf2[:, 0:int(Y[0])] = img3[:, 0:int(
        Y[0])]  #removing hands from copy of original image
    imgf2[:, int(Y[1]):int(width)] = img3[:, int(Y[1]):int(
        width)]  #also taking the mirror image of one hand
    cv2.imwrite('handsi.jpg', img4)
    #plt.imshow(img4)
    #plt.show()
    cv2.imwrite('body_without_handsi.jpg', imgf2)
    #plt.imshow(imgf2)
    #plt.show()

    #for cutting head
    ran2 = np.linspace(l[0], r[0], 300)
    q = 0
    Z = []
    for i in range(0, 300):
        if i == 0:
            continue
        z = retval(ran2[i], cont_f, 1)
        zp = retval(ran2[i - 1], cont_f, 1)
        if a == 0:
            p_slope = z[0] - zp[0]
            a = 1
        elif a == 1:
            slope = z[0] - zp[0]
            ratio = p_slope / slope
            p_slope = slope
        if ratio > 1.2:
            Z.append(z[0])
            w = ran2[i]
            break

    imgf2 = cv2.imread(inpf)
    img1 = np.zeros((height, width, dim), dtype=np.uint8)
    img1[:, :] = [255, 255, 255]
    img2 = np.zeros((height, width, dim), dtype=np.uint8)
    img2[:, :] = [255, 255, 255]
    img2[0:int(Z[0]), :] = imgf[0:int(Z[0]), :]
    imgf[0:int(Z[0]), :] = img1[0:int(Z[0]), :]
    cv2.imwrite('headi.jpg', img2)
    #plt.imshow(img4)
    #plt.show()
    cv2.imwrite('body_without_headi.jpg', imgf)
    #plt.imshow(imgf2)
    #plt.show()

    return 'handsi.jpg', 'body_without_handsi.jpg', 'head.jpg', 'body_without_headi.jpg'
Example #20
0
def disint(inpf, inps):
    '''
	inputs:
		inpf: input front image file
		inps: input side image file
	output:
		enclosing contour of:
			1. head
			2. body without head
			3. side view of head
			4. body without head side view
			5. hands(front view)
			6. body without hands(front view)
	'''
    imgf = cv2.imread(inpf)
    imgs = cv2.imread(inps)
    cont_f = encContour(inpf)
    cont_s = encContour(inps)

    #getting extreme points

    l = tuple(cont_f[cont_f[:, :, 0].argmin()][0])
    r = tuple(cont_f[cont_f[:, :, 0].argmax()][0])
    t = tuple(cont_f[cont_f[:, :, 1].argmin()][0])
    b = tuple(cont_f[cont_f[:, :, 1].argmax()][0])
    ls = tuple(cont_s[cont_s[:, :, 0].argmin()][0])
    rs = tuple(cont_s[cont_s[:, :, 0].argmax()][0])
    ts = tuple(cont_s[cont_s[:, :, 1].argmin()][0])
    bs = tuple(cont_s[cont_s[:, :, 1].argmax()][0])
    length = r[0] - l[0]
    ran = np.linspace(0, b[1], 200)
    for i in range(0, 200):
        if i == 0:
            continue
        ran[i] = b[1] - ran[i]

    c = 0
    z = 0
    X = []
    for i in ran:
        x11 = retval(i, cont_f, 0)  #0 for y-coordinate
        if z == 1:
            break
        if len(x11) == 2 and c == 0:
            wl = x11[1] - x11[0]
            c = 1
        if len(x11) == 2 and c == 1:
            nl = x11[1] - x11[0]
            if nl < 0.65 * wl:
                X.append([x11[0], b[1] - i])
                X.append([x11[1], b[1] - i])
                z = 1
                break
    imgf1 = imgf
    imgs1 = imgs
    h, w, d = imgf.shape
    h2, w2, d2 = imgs.shape
    img1 = np.zeros((h, w, d), dtype=np.uint8)
    img1[:, :] = [255, 255, 255]
    img2 = np.zeros((h, w, d), dtype=np.uint8)
    img2[:, :] = [255, 255, 255]
    img2[0:int(i), :] = imgf1[0:int(i), :]  #projecting the head in blank image
    imgf1[0:int(i), :] = img1[0:int(
        i), :]  #removing the head from copy of image
    cv2.imwrite('head.jpg', img2)
    cv2.imwrite('body_without_head.jpg', imgf1)
    dist = int(i - t[1])
    img5 = np.zeros((h2, w2, d2), dtype=np.uint8)
    img5[:, :] = [255, 255, 255]
    img6 = np.zeros((h2, w2, d2), dtype=np.uint8)
    img6[:, :] = [255, 255, 255]
    img6[0:ts[1] +
         dist, :] = imgs1[0:ts[1] +
                          dist, :]  #projecting the head in blank image
    imgs1[0:ts[1] + dist, :] = img5[0:ts[1] + dist, :]
    cv2.imwrite('head_side_view.jpg', img6)
    cv2.imwrite('side_view_without_head.jpg', imgs1)

    #cv2.imshow(img2, 'head')
    Y = []
    height, width, dim = imgf.shape
    #for hands
    a = 0
    b = 0
    ran2 = np.linspace(1, r[0], 200)
    for i in ran2:
        yp = retval(i - 1, cont_f, 1)
        y = retval(i, cont_f, 1)
        if len(yp) == 2 and a == 0:
            p_slope = y[0] - yp[0]
            a = 1  #comparing slopes
            continue
        elif len(yp) == 2 and len(y) == 2 and a == 1:
            #print len(yp)
            slope = y[1] - yp[1]
            if p_slope != 0:
                b = 1
                ratio = slope / p_slope
            p_slope = slope

        else:
            continue
        if b == 1 and ratio > 1.2:
            Y.append([i, y[1]])
            Y.append([width - i, y[1]])
            Y.append([i, y[0]])
            Y.append([width - i, y[0]])
            break
    print Y
    imgf2 = cv2.imread(inpf)
    img3 = np.zeros((height, width, dim), dtype=np.uint8)
    img3[:, :] = [255, 255, 255]
    img4 = np.zeros((height, width, dim), dtype=np.uint8)
    img4[:, :] = [255, 255, 255]
    img4[:, 0:int(i)] = imgf2[:, 0:int(i)]
    img4[:, int(width - i):int(width)] = imgf2[:, int(width - i):int(
        width)]  #projecting hands in blank image
    imgf2[:, 0:int(i)] = img3[:, 0:int(
        i)]  #removing hands from copy of original image
    imgf2[:, int(width - i):int(width)] = img3[:, int(width - i):int(
        width)]  #also taking the mirror image of one hand
    cv2.imwrite('hands.jpg', img4)
    cv2.imwrite('body_without_hands.jpg', imgf2)
    return 'head.jpg', 'body_without_head.jpg', 'head_side_view.jpg', 'side_view_without_head.jpg', 'hands.jpg', 'body_without_hands.jpg'
Example #21
0
def plot3dHuman2 (front,arms,side,points):
	
	#Extracting enclosing contours
	s=encContour(side)
	f=encContour(front)
	#armsc=encContour(arms)
	
	# arms has both the arms so encContour would give the bigger contour but we want both the contours. Dividing the image into two and then using encContour for both the images
	
	arms1=cv2.imread(arms)
	blank=np.zeros(arms1.shape,dtype=np.uint8)
	blank[:,:,:]=255
	arms2=cv2.imread(arms)
	#print arms1.shape[1]
	arms1[:,arms1.shape[1]/2:arms1.shape[1]]=blank[:,arms1.shape[1]/2:arms1.shape[1]]
	arms2[:,0 : arms1.shape[1]/2]=blank[:,0 : arms1.shape[1]/2]
	armsc1=encContour(arms1)
	armsc2=encContour(arms2)
	extarms1=give_extindices(armsc1)["right"]
	extarms2=give_extindices(armsc2)["left"]
	index1=index_flatside(armsc1,"right")[0]
	index2=index_flatside(armsc2,"left")[0]
# Getting extreme points
	'''
	fl=tuple(f[f[:,:,0].argmin()][0])
	fr=tuple(f[f[:,:,0].argmax()][0])
	 
	sl=tuple(s[s[:,:,0].argmin()][0])
	sr=tuple(s[s[:,:,0].argmax()][0])

	ft=tuple(f[f[:,:,1].argmin()][0])
	fb=tuple(f[f[:,:,1].argmax()][0])

	st=tuple(s[s[:,:,1].argmin()][0])
	sb=tuple(s[s[:,:,1].argmax()][0])
	'''
	extf=give_extpoints(f)
	exts=give_extpoints(s)
	f1=f.copy()
	s1=s.copy()
	f1=f1[:,0]
	s1=s1[:,0]
	bindex1=index_flatside(f,"left",0.33)
	bindex2=index_flatside(f,"right",0.33)


	matplotlib.rcParams['legend.fontsize']=10
	fig=plt.figure()
	ax=fig.gca(projection='3d')
	# Changing reference 
	f1=f1[:]-[(extf["left"][0]+extf["right"][0])/2,extf["bottom"][1]]
	f1[:,1]=-f1[:,1]
	s1=s1[:]-[(exts["left"][0]+exts["right"][0])/2,exts["bottom"][1]]
	s1[:,1]=-s1[:,1]
	armsc1[:,0,1]=-armsc1[:,0,1]
	armsc2[:,0,1]=-armsc2[:,0,1]
	if len(points) != 0 :
		#print points,fb[1]
		points[0][1]=-(points[0][1]-extf["bottom"][1])
		points[1][1]=-(points[1][1]-extf["bottom"][1])

	#print points
	
	
#Matching the topmost shoulder point ( bringing the arms to the main body )
	armsc1[:,0]=armsc1[:,0]-armsc1[index1,0]+f1[bindex1[0]]
	armsc2[:,0]=armsc2[:,0]-armsc2[index2,0]+f1[bindex2[0]]
	armsVrange=[min(f1[bindex1[1]][1],f1[bindex2[1]][1]),max(f1[bindex1[0]][1],f1[bindex2[0]][1])]
	armsc1=armsc1[:,0]
	armsc2=armsc2[:,0]
	extarms1=give_extpoints2(armsc1)
	extarms2=give_extpoints2(armsc2)
	temp=retval((f1[bindex1[0],1]+f1[bindex1[1],1])/2,s1)
	yl,yr=[0,0]
	if len(temp)==2:
		yl=(temp[0]+temp[1])/2
	temp=retval((f1[bindex2[0],1]+f1[bindex2[1],1])/2,s1)
	if len(temp)==2 :
		yr=(temp[0]+temp[1])/2
	X=[] ;Y=[];Z=[]
	armsplotting = False
	clickrange=[points[0][1],points[0][0]]
	clickrange=sorted(clickrange,reverse=False)
	for p in clickrange :
		if p <armsVrange[1] and p > armsVrange[0] :
			print " Don't click on arms "
			exit(1)
	if clickrange[0]<armsVrange[0] and clickrange[1] > armsVrange[1] :
		armsplotting=True
	
	if armsplotting :
#Plotting arms
		theta=np.linspace(0,2*np.pi,15)
		iterator=np.linspace(extarms1["right"][0],extarms1["left"][0],50)

	
		for i in iterator :
			x1=retval2(i,armsc1)
			#print x1
			if len(x1)!=2 :
				continue
			
			x_a=(x1[0]+x1[1])/2
			radius = (abs(x1[1]-x1[0]))/2
			for th in theta :
				X.append(i)
				Y.append(yl+radius*np.cos(th))
				Z.append(x_a+radius*np.sin(th))
		iterator=np.linspace(extarms2["right"][0],extarms2["left"][0],50)
		for i in iterator :
			x1=retval2(i,armsc2)
			if len(x1)!=2 :
				#print x1
				continue
		
			x_a=(x1[0]+x1[1])/2
			radius = abs(x1[1]-x1[0])/2
			for th in theta :
				X.append(i)
				Y.append(yr+radius*np.cos(th))
				Z.append(x_a+radius*np.sin(th))

	
	points=np.array(points)
	theta=np.linspace(0,2*np.pi,30)
	if len(points) != 0 :
		t= float( points[1,1]- points[0,1])/(max(max(f1[:,1]),max(s1[:,1]))*0.01)
		iterator=np.linspace(points[0,1],points[1,1],abs(t))

	else :
		iterator=np.linspace(0,max(max(f1[:,1]),max(s1[:,1])),100)
#For every value in iterator plotting the data points considering ellipses
	for fl in iterator:
		x1=retval(fl,f1)
		y1=retval(fl,s1)
		if len(y1) !=2 :
			continue
		if len(x1)%2 !=0 or len(x1) >5 or len(x1) == 0:
			continue
		
		x_a=(x1[0]+x1[1])/2
		y_a=(y1[0]+y1[1])/2
		a=(x1[1]-x1[0])/2
		b=(y1[1]-y1[0])/2

		for temp in x_a+a*np.cos(theta) :
			X.append(temp)
		for temp in y_a+b*np.sin(theta) :
			Y.append(temp)
			Z.append(fl)
		if len(x1) ==4 :
			
			x_a=(x1[2]+x1[3])/2
			y_a=(y1[0]+y1[1])/2
			a=(x1[2]-x1[3])/2
			b=(y1[1]-y1[0])/2
			#print y1,b
			for temp in x_a+a*np.cos(theta) :
				X.append(temp)
			for temp in y_a+b*np.sin(theta) :
				Y.append(temp)
				Z.append(fl)
	fig=plt.figure()
	ax=fig.add_subplot(111,projection='3d')
#Using wireframe plots ( please improve this : spaces between legs is not clear, may use surface plots )
	ax.plot_wireframe(X,Y,Z,rstride=10,cstride=10)
	# Create cubic bounding box to simulate equal aspect ratio
	max_range = np.array([max(X)-min(X), max(Y)-min(Y),max(Z)-min(Z)]).max()
	Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(max(X)+min(X))
	Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() + 0.5*(max(Y)+min(Y))
	Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() + 0.5*(max(Z)+min(Z))
	for xb, yb, zb in zip(Xb, Yb, Zb):
	   ax.plot([xb], [yb], [zb], 'w')
	plt.show()
Example #22
0
from outer import encContour
from height import height
from plot import plot_contour
from matplotlib import pyplot as plt
import cv2
import numpy as np
import copy
import math
import sys

cnt1 = encContour('man_front.jpg')
cnt2 = encContour('man_side.jpg')
image = cv2.imread('man_front.jpg')
plot_contour(cnt1=cnt1, cnt2=cnt2)
#cv2.drawContours(image,cnt1,-1,(255),3)
#cv2.imshow('front image',image)
#cv2.waitKey(0)
#print((cnt))
'''
#test for encContour
image = cv2.imread(url)
cnt = encContour(url)
cv2.drawContours(image,cnt,-1,(255),3)
cv2.imshow('image',image)
cv2.waitKey(0)
cv2.destroyAllWindows()
'''
Example #23
0
def plot3dHuman (front,side,points):
	
#Extracting enclosing contours
	s=encContour(side)
	f=encContour(front)
	
# Function which gives x values for a height t and modified contour f
	
# Getting extreme points
	fl=tuple(f[f[:,:,0].argmin()][0])
	fr=tuple(f[f[:,:,0].argmax()][0])
	 
	sl=tuple(s[s[:,:,0].argmin()][0])
	sr=tuple(s[s[:,:,0].argmax()][0])

	ft=tuple(f[f[:,:,1].argmin()][0])
	fb=tuple(f[f[:,:,1].argmax()][0])

	st=tuple(s[s[:,:,1].argmin()][0])
	sb=tuple(s[s[:,:,1].argmax()][0])
	#from height import height
	#height('man_front.jpg')
	#print ft,fb
	#print st,sb
# manipulating the contour to set the lowest point to origin and the body in positive direction
	f1=f
	f1=f1[:,0]-[fr[0]-(fl[0]+fr[0])/2,fb[1]]
	if len(points) != 0 :
		points[:,1]=points[:,1]-fb[1]
		points[:,1]=-points[:,1]
	f1[:,1]=-f1[:,1]
	
	s1=s
	s1=s1[:,0]-[sl[0]+(sl[0]+sr[0])/2,sb[1]]
	s1[:,1]=-s1[:,1]
	matplotlib.rcParams['legend.fontsize']=10
	fig=plt.figure()
	ax=fig.gca(projection='3d')
	s1
	#y=np.zeros(len(f1[:,0]),dtype=np.int64)
	#ax.plot(f1[:,0],y,f1[:,1],label='front')

	#x=np.zeros(len(s1[:,0]),dtype=np.int64)
	#ax.plot(x,s1[:,0],s1[:,1],label='side')
	ax.set_aspect('equal')
	#print retval(800,f1)
#Using 30 data points per height 
	theta=np.linspace(0,2*np.pi,30)
	if len(points) != 0 :
		t= float( points[1,1]- points[0,1])/(max(max(f1[:,1]),max(s1[:,1]))*0.01)
		iterator=np.linspace(points[0,1],points[1,1],t)
	else :
		iterator=np.linspace(0,max(max(f1[:,1]),max(s1[:,1])),100)
	X=[] ;Y=[];Z=[]
#For every value in iterator plotting the data points considering ellipses
	for fl in iterator:
		x1=retval(fl,f1)
		y1=retval(fl,s1)
		if len(x1)%2 !=0 :
			continue
		if len(x1) == 6:
			x_a=(x1[0]+x1[1])/2
			y_a=(y1[0]+y1[1])/2
			x_a1=(x1[4]+x1[5])/2
			a=(x1[1]-x1[0])/2
			a1=(x1[5]-x1[4])/2
			b=a
			b1=a1
			for temp in (x1[0]+x1[1])/2+a*np.cos(theta) :
				X.append(temp)
			for temp in (y1[0]+y1[1])/2+b*np.sin(theta) :
				Y.append(temp)
				Z.append(fl)
			for temp in (x1[4]+x1[5])/2+a1*np.cos(theta) :
				X.append(temp)
			for temp in (y1[0]+y1[1])/2+b1*np.sin(theta) :
				Y.append(temp)
				Z.append(fl)
		
		xf=[]
		if len(x1) == 6 :
			xf=[x1[2],x1[3]]
		elif len(x1) in [2,4] :
			xf=x1
		else:
			maxdiff=0
			d=0
			index=-1
			while d<len(x1) :
				diff=x1[d+1]-x1[d]
				if diff> maxdiff :
					maxdiff = diff
					index=d
				d+=2
				xf=[x1[index],x1[index+1]]
			try :
				if x1[index-1]-x1[index-2] < 1.20*(x1[index+1]-x1[index]) and x1[index-1]-x1[index-2] > 0.80*(x1[index+1]-x1[index]) :
					xf=x1[index-2:index+2]
					x1=xf
				elif x1[index+3]-x1[index+2] < 1.20*(x1[index+1]-x1[index]) and x1[index+3]-x1[index+2] > 0.80*(x1[index+1]-x1[index]) :
					xf=x1[index:index+4]
					x1=xf
			except IndexError:
				pass
	#	print len(x1),len(y1)
		if xf == [] :
			continue
		x_a=(xf[1]+xf[0])/2
		y_a=(y1[0]+y1[1])/2
		a=(xf[1]-xf[0])/2
		b=(y1[1]-y1[0])/2
		#print y1,b
		for temp in x_a+a*np.cos(theta) :
			X.append(temp)
		for temp in y_a+b*np.sin(theta) :
			Y.append(temp)
			Z.append(fl)
		
		if(len(x1)==4):
			a=(x1[3]-x1[2])/2
			x_a=(x1[3]+x1[2])/2
			y_a=(y1[0]+y1[1])/2
			for temp in x_a+a*np.cos(theta) :
				X.append(temp)
			for temp in y_a+b*np.sin(theta) :
				Y.append(temp)
				Z.append(fl)
	fig=plt.figure()
	ax=fig.add_subplot(111,projection='3d')
	#Using wireframe plots ( please improve this : spaces between legs is not clear, may use surface plots )
	ax.plot_wireframe(X,Y,Z,rstride=10,cstride=10)
	# Create cubic bounding box to simulate equal aspect ratio ( this is just to keep same aspect ratio )
	max_range = np.array([max(X)-min(X), max(Y)-min(Y),max(Z)-min(Z)]).max()
	Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(max(X)+min(X))
	Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() + 0.5*(max(Y)+min(Y))
	Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() + 0.5*(max(Z)+min(Z))
	for xb, yb, zb in zip(Xb, Yb, Zb):
	   ax.plot([xb], [yb], [zb], 'w')
	plt.show()
Example #24
0
from outer import encContour
from height import height
from plot import plot_contour
from matplotlib import pyplot as plt
import cv2
import numpy as np
import copy
import math
import sys

cnt1 = encContour('man_front.jpg')
cnt2 = encContour('man_side.jpg')
image = cv2.imread('man_front.jpg')
plot_contour(cnt1= cnt1, cnt2= cnt2)
#cv2.drawContours(image,cnt1,-1,(255),3)
#cv2.imshow('front image',image)
#cv2.waitKey(0)
#print((cnt))
'''
#test for encContour
image = cv2.imread(url)
cnt = encContour(url)
cv2.drawContours(image,cnt,-1,(255),3)
cv2.imshow('image',image)
cv2.waitKey(0)
cv2.destroyAllWindows()
'''
Example #25
0
def parts_divide_hum(inpf,inps):
	imgf= inpf.copy()
	imgs= inps.copy()
	cont_f=encContour(imgf)
	cont_s=encContour(inps)


	#getting extreme points

	l=tuple(cont_f[cont_f[:,:,0].argmin()][0])
	r=tuple(cont_f[cont_f[:,:,0].argmax()][0])
	t=tuple(cont_f[cont_f[:,:,1].argmin()][0])
	b=tuple(cont_f[cont_f[:,:,1].argmax()][0])
	ls=tuple(cont_s[cont_s[:,:,0].argmin()][0])
	rs=tuple(cont_s[cont_s[:,:,0].argmax()][0])
	ts=tuple(cont_s[cont_s[:,:,1].argmin()][0])
	bs=tuple(cont_s[cont_s[:,:,1].argmax()][0])
	hi=b[1]-t[1]
	p=t[1]+0.4*hi
	x=retval(p,cont_f,0)
	ran=np.linspace(t[1],p,200)
	for i in range(0,200):
		ran[i]=p-ran[i]
		ran[i]=ran[i]+t[1]

	Y=[]
	a=0
	b=0
	#sorted(ran,reverse=True)
	for i in range(1,200):
		#i=-i
		#i=p+i
		yp=retval(ran[i-1],cont_f,0)
		y=retval(ran[i],cont_f,0)
		if len(yp)==2 and a==0:
			p_slope=yp[0]-y[0]
			a=1									#comparing slopes
			continue
		elif len(yp)==2 and len(y)==2 and a==1:
			#print len(yp)
			slope=yp[0]-y[0]
			print p_slope
			if p_slope!=0:
				b=1
				ratio=float(slope)/p_slope
				#print ratio
			p_slope=slope

		else:
			continue
		if b==1 and ratio>1.2:
			Y.append(y[0])
			Y.append(y[1])
			break
	imgf2 = inpf.copy()
	#imgf2=cv2.imread(inpf)
	height,width,dim=imgf2.shape
	img3=np.zeros((height,width,dim), dtype=np.uint8)
	img3[:,:]=[255,255,255]
	img4=np.zeros((height,width,dim), dtype=np.uint8)
	img4[:,:]=[255,255,255]
	img4[:,0:int(Y[0])]=imgf2[:,0:int(Y[0])]
	img4[:,int(Y[1]):int(width)]=imgf2[:,int(Y[1]):int(width)]			#projecting hands in blank image
	imgf2[:,0:int(Y[0])]=img3[:,0:int(Y[0])]											#removing hands from copy of original image
	imgf2[:,int(Y[1]):int(width)]=img3[:,int(Y[1]):int(width)]			#also taking the mirror image of one hand
	cv2.imwrite('handsi.jpg', img4)
	#plt.imshow(img4)
	#plt.show()
	cv2.imwrite('body_without_handsi.jpg', imgf2)
	#plt.imshow(imgf2)
	#plt.show()

	#for cutting head
	wid2=(r[0]-l[0])/4
	
	ran2=np.linspace(l[0]+wid2,r[0],300)
	q=0
	Z=[]
	for i in range(0,300):
		if i==0:
			continue
		z=retval(ran2[i],cont_f,1)
		zp=retval(ran2[i-1],cont_f,1)
		if a==0:
			p_slope=float(zp[0]-z[0])/(ran2[i]-ran2[i-1])
			a=1
		elif a==1:
			slope=float(zp[0]-z[0])/(ran2[i]-ran2[i-1])
			if p_slope!=0:
				ratio=float(slope)/p_slope
				#print ratio
			p_slope=slope
		if ratio>1.5:
			Z.append(zp[0])
			w=ran2[i]
			break
	#print len(Z)
	#imgf2=cv2.imread(inpf)
	imgf2 = inpf.copy()
	img1=np.zeros((height,width,dim), dtype=np.uint8)
	img1[:,:]=[255,255,255]
	img2=np.zeros((height,width,dim), dtype=np.uint8)
	img2[:,:]=[255,255,255]
	img2[0:int(Z[0]),:]=imgf[0:int(Z[0]),:]
	imgf[0:int(Z[0]),:]=img1[0:int(Z[0]),:]
	cv2.imwrite('headi.jpg', img2)
	#plt.imshow(img4)
	#plt.show()
	cv2.imwrite('body_without_headi.jpg', imgf)
	#plt.imshow(imgf2)
	#plt.show()

	#head side view

	cont_h=encContour(img2)
	th=tuple(cont_h[cont_h[:,:,1].argmin()][0])
	bh=tuple(cont_h[cont_h[:,:,1].argmax()][0])
	head_len=bh[1]-th[1]
	m=ts[1]+head_len
	imgs2=imgs.copy()
	hs,ws,ds=imgs2.shape
	img5=np.zeros((hs,ws,ds), dtype=np.uint8)
	img5[:,:]=[255,255,255]
	img6=np.zeros((hs,ws,ds), dtype=np.uint8)
	img6[:,:]=[255,255,255]
	img6[0:int(m),:]=imgs2[0:int(m),:]
	imgs2[0:int(m),:]=img5[0:int(m),:]
	cv2.imwrite('head_sidei.jpg', img6)
	#plt.imshow(img4)
	#plt.show()
	cv2.imwrite('body_without_head_sidei.jpg', imgs2)
	#plt.imshow(imgf2)
	#plt.show()

	return 'headi.jpg','body_without_headi.jpg','head_sidei.jpg','body_without_head_sidei.jpg', 'handsi.jpg','body_without_handsi.jpg',
Example #26
0
def ret_hscale(rimg,mimg,args):
# getting the enclosing contours of real image and model image
	realc=encContour(rimg)
	modelc=encContour(mimg)
	extreal=give_extpoints(realc)
	extmodel=give_extpoints(modelc)
	midreal=int( 0.25*extreal["bottom"][1]+0.75*extreal["top"][1])
	midmodel=int( 0.25*extmodel["bottom"][1]+0.75*extmodel["top"][1])

	realindex=give_index_ct(realc,midreal+extreal["top"][1])
	modelindex=give_index_ct(modelc,midmodel+extmodel["top"][1])

	min=realc[realindex[0],0,0]
	# for real
	
	leftreal=realindex[0]
	k=0
	for i in realindex :
		k+=1

	for i in range(1,len(realindex)):
		if min> realc[realindex[i],0,0] :
			
			leftreal=realindex[i]
			min=realc[realindex[i],0,0]
	min=modelc[modelindex[0],0,0]
	# for model
	
	leftmodel=modelindex[0]
	k=0
	for i in modelindex :
		k+=1
	for i in range(1,len(modelindex)) :
		if min>modelc[modelindex[i],0,0] :
			leftmodel=modelindex[i]
			
			min=modelc[modelindex[i],0,0]
#figuring out the direction on which to move to reach the shoulder
	directionreal='+' if realc[leftreal+1,0,1]+realc[leftreal+2,0,1]+realc[leftreal+3,0,1]<realc[leftreal,0,1]+realc[leftreal-1,0,1]+realc[leftreal-2,0,1] else '-'
	directionmodel='+' if modelc[leftmodel+1,0,1]+modelc[leftmodel+2,0,1]+modelc[leftmodel+3,0,1]<modelc[leftmodel,0,1]+modelc[leftmodel-1,0,1]+modelc[leftmodel-2,0,1] else '-'
# Getting the shoulder point for real image
	i=leftreal
	avr,avm=[0,0]
	a=realc[i,0]
	while(1) :
		
		if directionreal=='+' :
			b=realc[i+1,0]
			c=realc[i+2,0]
			d=realc[i+3,0]
			e=realc[i+4,0]
			f=realc[i+5,0]						
			avr=[float(b[0]+c[0]+d[0]+e[0]+f[0])/5,float(b[1]+c[1]+d[1]+e[1]+f[1])/5]
			i+=5
		else:
			b=realc[i-1,0]
			c=realc[i-2,0]
			d=realc[i-3,0]
			e=realc[i-4,0]
			f=realc[i-5,0]						
			avr=[float(b[0]+c[0]+d[0]+e[0]+f[0])/5,float(b[1]+c[1]+d[1]+e[1]+f[1])/5]
			i-=5
		
		if avr[0]!=a[0] and abs(float(avr[1]-a[1])/(avr[0]-a[0]))<1 :
			realshoulder=a
			break
		a=avr
# Getting the shoulder point for model image
	i=leftmodel
	a=modelc[i,0]
	while(1) :
		if directionreal=='+' :
			b=modelc[i+1,0]
			c=modelc[i+2,0]
			d=modelc[i+3,0]
			e=modelc[i+4,0]
			f=modelc[i+5,0]						
			avm=[float(b[0]+c[0]+d[0]+e[0]+f[0])/5,float(b[1]+c[1]+d[1]+e[1]+f[1])/5]
			i+=5
		else:
			b=modelc[i-1,0]
			c=modelc[i-2,0]
			d=modelc[i-3,0]
			e=modelc[i-4,0]
			f=modelc[i-5,0]						
			avm=[float(b[0]+c[0]+d[0]+e[0]+f[0])/5,float(b[1]+c[1]+d[1]+e[1]+f[1])/5]
			i-=5
		if avm[0]!=a[0] and abs(float(avm[1]-a[1])/(avm[0]-a[0]))<1 :
			modelshoulder=a
			break
		a=avm
#	print realshoulder,modelshoulder
	
#Calculating the width of model shoulder and real shoulder
	a=give_index_ct(realc,realshoulder[1])
	print "realshoulder",realc[a[0],0],realc[a[1],0]
	
	b=give_index_ct(modelc,modelshoulder[1])
	print "modelshoulder",modelc[b[0],0],modelc[b[1],0]
	if len(a)%2!=0 or len(b)%2!=0 :
		print "some error message" 
		exit(1)
	scaling=float(realc[a[1],0,0]-realc[a[0],0,0])/(modelc[b[1],0,0]-modelc[b[0],0,0])
	print scaling
	for i in args :
		x=cv2.imread(i)
	#	print x.shape,int(x.shape[1]*scaling)
		x1=cv2.resize(x,(int(float(x.shape[1])*scaling),x.shape[0]),interpolation=cv2.INTER_CUBIC)
		cv2.imwrite('scaled_'+i,x1)
	return scaling