Example #1
0
def train(model,
          output_dir,
          train_feed,
          test_feed,
          lr_start=0.01,
          lr_stop=0.00001,
          lr_gamma=0.75,
          n_epochs=150,
          gan_margin=0.35):
    n_hidden = model.latent_encoder.n_out

    # For plotting
    original_x = np.array(test_feed.batches().next()[0])
    samples_z = np.random.normal(size=(len(original_x), n_hidden))
    samples_z = (samples_z).astype(dp.float_)
    recon_video = Video(os.path.join(output_dir, 'convergence_recon.mp4'))
    sample_video = Video(os.path.join(output_dir, 'convergence_samples.mp4'))
    original_x_ = original_x
    original_x_ = img_inverse_transform(original_x)
    sp.misc.imsave(os.path.join(output_dir, 'examples.png'),
                   dp.misc.img_tile(original_x_))

    # Train network
    learn_rule = dp.RMSProp()
    annealer = dp.GammaAnnealer(lr_start, lr_stop, n_epochs, gamma=lr_gamma)
    trainer = aegan.GradientDescent(model,
                                    train_feed,
                                    learn_rule,
                                    margin=gan_margin)
    try:
        for e in range(n_epochs):
            model.phase = 'train'
            model.setup(*train_feed.shapes)
            learn_rule.learn_rate = annealer.value(e) / train_feed.batch_size
            trainer.train_epoch()
            model.phase = 'test'
            original_z = model.encode(original_x)
            recon_x = model.decode(original_z)
            samples_x = model.decode(samples_z)
            recon_x = img_inverse_transform(recon_x)
            samples_x = img_inverse_transform(samples_x)
            recon_video.append(dp.misc.img_tile(recon_x))
            sample_video.append(dp.misc.img_tile(samples_x))
    except KeyboardInterrupt:
        pass

    model.phase = 'test'
    n_examples = 100
    test_feed.reset()
    original_x = np.array(test_feed.batches().next()[0])[:n_examples]
    samples_z = np.random.normal(size=(n_examples, n_hidden))
    output.samples(model, samples_z, output_dir, img_inverse_transform)
    output.reconstructions(model, original_x, output_dir,
                           img_inverse_transform)
    original_z = model.encode(original_x)
    output.walk(model, original_z, output_dir, img_inverse_transform)
    return model
def train(
    model,
    output_dir,
    train_feed,
    test_feed,
    lr_start=0.01,
    lr_stop=0.00001,
    lr_gamma=0.75,
    n_epochs=150,
    gan_margin=0.35,
):
    n_hidden = model.latent_encoder.n_out

    # For plotting
    original_x = np.array(test_feed.batches().next()[0])
    samples_z = np.random.normal(size=(len(original_x), n_hidden))
    samples_z = (samples_z).astype(dp.float_)
    recon_video = Video(os.path.join(output_dir, "convergence_recon.mp4"))
    sample_video = Video(os.path.join(output_dir, "convergence_samples.mp4"))
    original_x_ = original_x
    original_x_ = img_inverse_transform(original_x)
    sp.misc.imsave(os.path.join(output_dir, "examples.png"), dp.misc.img_tile(original_x_))

    # Train network
    learn_rule = dp.RMSProp()
    annealer = dp.GammaAnnealer(lr_start, lr_stop, n_epochs, gamma=lr_gamma)
    trainer = aegan.GradientDescent(model, train_feed, learn_rule, margin=gan_margin)
    try:
        for e in range(n_epochs):
            model.phase = "train"
            model.setup(*train_feed.shapes)
            learn_rule.learn_rate = annealer.value(e) / train_feed.batch_size
            trainer.train_epoch()
            model.phase = "test"
            original_z = model.encode(original_x)
            recon_x = model.decode(original_z)
            samples_x = model.decode(samples_z)
            recon_x = img_inverse_transform(recon_x)
            samples_x = img_inverse_transform(samples_x)
            recon_video.append(dp.misc.img_tile(recon_x))
            sample_video.append(dp.misc.img_tile(samples_x))
    except KeyboardInterrupt:
        pass

    model.phase = "test"
    n_examples = 100
    test_feed.reset()
    original_x = np.array(test_feed.batches().next()[0])[:n_examples]
    samples_z = np.random.normal(size=(n_examples, n_hidden))
    output.samples(model, samples_z, output_dir, img_inverse_transform)
    output.reconstructions(model, original_x, output_dir, img_inverse_transform)
    original_z = model.encode(original_x)
    output.walk(model, original_z, output_dir, img_inverse_transform)
    return model
Example #3
0
def run():

    experiment_name = 'celeba'

    img_size = 64
    epoch_size = 1
    batch_size = 2000

    n_hidden = 128
    _, experiment_name = aegan.build_model(
        experiment_name,
        img_size,
        n_hidden=n_hidden,
        recon_depth=9,
        recon_vs_gan_weight=1e-6,
        real_vs_gen_weight=0.5,
        discriminate_ae_recon=False,
        discriminate_sample_z=True,
    )
    print('experiment_name: %s' % experiment_name)
    output_dir = os.path.join('out', experiment_name)

    model_path = os.path.join(output_dir, 'arch.pickle')
    print('Loading model from disk')
    print(model_path)
    with open(model_path, 'rb') as f:
        model = pickle.load(f)

    print('Getting data feed')
    model.phase = 'test'
    train_feed, test_feed = dataset.celeba.feeds(img_size,
                                                 batch_size=batch_size,
                                                 epoch_size=epoch_size,
                                                 split='test',
                                                 n_augment=0)

    save_dir = os.path.join(output_dir, 'User-Testing')
    if not os.path.expanduser(save_dir):
        os.mkdir(save_dir)

    original_x = np.array(test_feed.batches().next()[0])
    samples_z = np.random.normal(size=(len(original_x), n_hidden))
    samples_z = (samples_z).astype(dp.float_)

    print('Saving samples')
    output.samples(model, samples_z, save_dir, img_inverse_transform)

    print('Saving reconstructions')
    output.reconstructions(model, original_x, save_dir, img_inverse_transform)
def run():
    n_hidden = 64
    ae_kind = 'variational'

    lr_start = 0.01
    lr_stop = 0.0001
    lr_gamma = 0.75
    n_epochs = 150
    epoch_size = 250
    batch_size = 64

    experiment_name = 'mnist_ae'
    experiment_name += '_nhidden%i' % n_hidden

    out_dir = os.path.join('out', experiment_name)
    arch_path = os.path.join(out_dir, 'arch.pickle')
    start_arch_path = arch_path
    start_arch_path = None

    print('experiment_name', experiment_name)
    print('start_arch_path', start_arch_path)
    print('arch_path', arch_path)

    # Setup network
    if start_arch_path is None:
        print('Creating new model')
        encoder, decoder, _ = architectures.mnist()
        if ae_kind == 'variational':
            latent_encoder = architectures.vae_latent_encoder(n_hidden)
        elif ae_kind == 'adversarial':
            latent_encoder = architectures.aae_latent_encoder(n_hidden)
    else:
        print('Starting from %s' % start_arch_path)
        with open(start_arch_path, 'rb') as f:
            decoder, discriminator = pickle.load(f)

    model = ae.Autoencoder(
        encoder=encoder,
        latent_encoder=latent_encoder,
        decoder=decoder,
    )
    model.recon_error = ae.GaussianNegLogLikelihood()

    # Fetch dataset
    dataset = dp.dataset.MNIST()
    x_train, y_train, x_test, y_test = dataset.arrays()
    x_train = mnist_transform(x_train)
    x_test = mnist_transform(x_test)

    # Prepare network inputs
    train_input = dp.Input(x_train, batch_size, epoch_size)
    test_input = dp.Input(x_test, batch_size)

    # Plotting
    n_examples = 64
    batch = test_input.batches().next()
    original_x = batch['x']
    original_x = np.array(original_x)[:n_examples]
    samples_z = np.random.normal(size=(n_examples, n_hidden))
    samples_z = (samples_z).astype(dp.float_)

    # Train network
    learn_rule = dp.RMSProp()
    trainer = dp.GradientDescent(model, train_input, learn_rule)
    annealer = dp.GammaAnnealer(lr_start, lr_stop, n_epochs, gamma=lr_gamma)
    try:
        recon_video = Video(os.path.join(out_dir, 'convergence_recon.mp4'))
        sample_video = Video(os.path.join(out_dir, 'convergence_samples.mp4'))
        sp.misc.imsave(os.path.join(out_dir, 'examples.png'),
                       dp.misc.img_tile(mnist_inverse_transform(original_x)))
        for e in range(n_epochs):
            model.phase = 'train'
            model.setup(**train_input.shapes)
            learn_rule.learn_rate = annealer.value(e) / batch_size
            loss = trainer.train_epoch()

            model.phase = 'test'
            original_z = model.encode(original_x)
            recon_x = model.decode(original_z)
            samples_x = model.decode(samples_z)
            recon_x = mnist_inverse_transform(recon_x)
            samples_x = mnist_inverse_transform(model.decode(samples_z))
            recon_video.append(dp.misc.img_tile(recon_x))
            sample_video.append(dp.misc.img_tile(samples_x))
            likelihood = model.likelihood(test_input)
            print('epoch %i   Train loss:%.4f  Test likelihood:%.4f' %
                  (e, np.mean(loss), np.mean(likelihood)))
    except KeyboardInterrupt:
        pass
    print('Saving model to disk')
    with open(arch_path, 'wb') as f:
        pickle.dump((decoder, discriminator), f)

    model.phase = 'test'
    n_examples = 100
    samples_z = np.random.normal(size=(n_examples, n_hidden)).astype(dp.float_)
    output.samples(model, samples_z, out_dir, mnist_inverse_transform)
    output.walk(model, samples_z, out_dir, mnist_inverse_transform)
def run():
    n_hidden = 128
    real_vs_gen_weight = 0.75
    gan_margin = 0.3

    lr_start = 0.04
    lr_stop = 0.0001
    lr_gamma = 0.75
    n_epochs = 150
    epoch_size = 250
    batch_size = 64

    experiment_name = 'mnist_gan'
    experiment_name += '_nhidden%i' % n_hidden

    out_dir = os.path.join('out', experiment_name)
    arch_path = os.path.join(out_dir, 'arch.pickle')
    start_arch_path = arch_path
    start_arch_path = None

    print('experiment_name', experiment_name)
    print('start_arch_path', start_arch_path)
    print('arch_path', arch_path)

    # Setup network
    if start_arch_path is None:
        print('Creating new model')
        _, decoder, discriminator = architectures.mnist()
    else:
        print('Starting from %s' % start_arch_path)
        with open(start_arch_path, 'rb') as f:
            decoder, discriminator = pickle.load(f)

    model = gan.GAN(
        n_hidden=n_hidden,
        generator=decoder,
        discriminator=discriminator,
        real_vs_gen_weight=real_vs_gen_weight,
    )

    # Fetch dataset
    dataset = dp.dataset.MNIST()
    x_train, y_train, x_test, y_test = dataset.arrays()
    x_train = mnist_transform(x_train)
    x_test = mnist_transform(x_test)

    # Prepare network inputs
    train_input = dp.Input(x_train, batch_size, epoch_size)
    test_input = dp.Input(x_test, batch_size)

    # Plotting
    n_examples = 64
    batch = test_input.batches().next()
    original_x = batch['x']
    original_x = np.array(original_x)[:n_examples]
    samples_z = np.random.normal(size=(n_examples, n_hidden))
    samples_z = (samples_z).astype(dp.float_)

    # Train network
    learn_rule = dp.RMSProp()
    trainer = gan.GradientDescent(model, train_input, learn_rule,
                                  margin=gan_margin)
    annealer = dp.GammaAnnealer(lr_start, lr_stop, n_epochs, gamma=lr_gamma)
    try:
        sample_video = Video(os.path.join(out_dir, 'convergence_samples.mp4'))
        sp.misc.imsave(os.path.join(out_dir, 'examples.png'),
                       dp.misc.img_tile(mnist_inverse_transform(original_x)))
        for e in range(n_epochs):
            model.phase = 'train'
            model.setup(**train_input.shapes)
            learn_rule.learn_rate = annealer.value(e) / batch_size
            trainer.train_epoch()

            model.phase = 'test'
            samples_x = model.decode(samples_z)
            samples_x = mnist_inverse_transform(model.decode(samples_z))
            sample_video.append(dp.misc.img_tile(samples_x))
    except KeyboardInterrupt:
        pass
    print('Saving model to disk')
    with open(arch_path, 'wb') as f:
        pickle.dump((decoder, discriminator), f)

    model.phase = 'test'
    n_examples = 100
    samples_z = np.random.normal(size=(n_examples, n_hidden)).astype(dp.float_)
    output.samples(model, samples_z, out_dir, mnist_inverse_transform)
    output.walk(model, samples_z, out_dir, mnist_inverse_transform)
Example #6
0
def run():
    n_hidden = 128
    real_vs_gen_weight = 0.75
    gan_margin = 0.3

    lr_start = 0.04
    lr_stop = 0.0001
    lr_gamma = 0.75
    n_epochs = 150
    epoch_size = 250
    batch_size = 64

    experiment_name = 'mnist_gan'
    experiment_name += '_nhidden%i' % n_hidden

    out_dir = os.path.join('out', experiment_name)
    arch_path = os.path.join(out_dir, 'arch.pickle')
    start_arch_path = arch_path
    start_arch_path = None

    print('experiment_name', experiment_name)
    print('start_arch_path', start_arch_path)
    print('arch_path', arch_path)

    # Setup network
    if start_arch_path is None:
        print('Creating new model')
        _, decoder, discriminator = architectures.mnist()
    else:
        print('Starting from %s' % start_arch_path)
        with open(start_arch_path, 'rb') as f:
            decoder, discriminator = pickle.load(f)

    model = gan.GAN(
        n_hidden=n_hidden,
        generator=decoder,
        discriminator=discriminator,
        real_vs_gen_weight=real_vs_gen_weight,
    )

    # Fetch dataset
    dataset = dp.dataset.MNIST()
    x_train, y_train, x_test, y_test = dataset.arrays()
    x_train = mnist_transform(x_train)
    x_test = mnist_transform(x_test)

    # Prepare network feeds
    train_feed = dp.Feed(x_train, batch_size, epoch_size)
    test_feed = dp.Feed(x_test, batch_size)

    # Plotting
    n_examples = 64
    original_x, = test_feed.batches().next()
    original_x = np.array(original_x)[:n_examples]
    samples_z = np.random.normal(size=(n_examples, n_hidden))
    samples_z = (samples_z).astype(dp.float_)

    # Train network
    learn_rule = dp.RMSProp()
    trainer = gan.GradientDescent(model,
                                  train_feed,
                                  learn_rule,
                                  margin=gan_margin)
    annealer = dp.GammaAnnealer(lr_start, lr_stop, n_epochs, gamma=lr_gamma)
    try:
        sample_video = Video(os.path.join(out_dir, 'convergence_samples.mp4'))
        sp.misc.imsave(os.path.join(out_dir, 'examples.png'),
                       dp.misc.img_tile(mnist_inverse_transform(original_x)))
        for e in range(n_epochs):
            model.phase = 'train'
            model.setup(*train_feed.shapes)
            learn_rule.learn_rate = annealer.value(e) / batch_size
            trainer.train_epoch()

            model.phase = 'test'
            samples_x = model.decode(samples_z)
            samples_x = mnist_inverse_transform(model.decode(samples_z))
            sample_video.append(dp.misc.img_tile(samples_x))
    except KeyboardInterrupt:
        pass
    print('Saving model to disk')
    with open(arch_path, 'wb') as f:
        pickle.dump((decoder, discriminator), f)

    model.phase = 'test'
    n_examples = 100
    samples_z = np.random.normal(size=(n_examples, n_hidden)).astype(dp.float_)
    output.samples(model, samples_z, out_dir, mnist_inverse_transform)
    output.walk(model, samples_z, out_dir, mnist_inverse_transform)
Example #7
0
def run():
    experiment_name = 'celeba-ae'

    img_size = 64
    epoch_size = 250
    batch_size = 64
    n_hidden = 128
    n_augment = int(6e5)
    train_feed, test_feed = dataset.celeba.feeds(
        img_size,
        split='test',
        batch_size=batch_size,
        epoch_size=epoch_size,
        n_augment=n_augment,
    )

    experiment_name += '_nhidden%i' % n_hidden

    out_dir = os.path.join('out', experiment_name)
    arch_path = os.path.join(out_dir, 'arch.pickle')
    start_arch_path = arch_path
    start_arch_path = None

    print('experiment_name', experiment_name)
    print('start_arch_path', start_arch_path)
    print('arch_path', arch_path)

    ae_kind = 'variational'
    # Setup network
    if start_arch_path is None:
        print('Creating new model')
        encoder, decoder, _ = architectures.img64x64()
        if ae_kind == 'variational':
            latent_encoder = architectures.vae_latent_encoder(n_hidden)
        elif ae_kind == 'adversarial':
            latent_encoder = architectures.aae_latent_encoder(n_hidden)
    else:
        print('Starting from %s' % start_arch_path)
        with open(start_arch_path, 'rb') as f:
            encoder, latent_encoder, decoder = pickle.load(f)

    model = ae.Autoencoder(
        encoder=encoder,
        latent_encoder=latent_encoder,
        decoder=decoder,
    )
    model.recon_error = ae.NLLNormal()

    # Plotting
    n_examples = 64
    original_x, = test_feed.batches().next()
    original_x = np.array(original_x)[:n_examples]
    samples_z = np.random.normal(size=(n_examples, n_hidden))
    samples_z = (samples_z).astype(dp.float_)

    n_epochs = 250
    lr_start = 0.025
    lr_stop = 0.00001
    lr_gamma = 0.75
    # Train network
    learn_rule = dp.RMSProp()
    trainer = dp.GradientDescent(model, train_feed, learn_rule)
    annealer = dp.GammaAnnealer(lr_start, lr_stop, n_epochs, gamma=lr_gamma)
    try:
        recon_video = Video(os.path.join(out_dir, 'convergence_recon.mp4'))
        sample_video = Video(os.path.join(out_dir, 'convergence_samples.mp4'))
        sp.misc.imsave(os.path.join(out_dir, 'examples.png'),
                       dp.misc.img_tile(img_inverse_transform(original_x)))
        for e in range(n_epochs):
            model.phase = 'train'
            model.setup(*train_feed.shapes)
            learn_rule.learn_rate = annealer.value(e) / batch_size
            loss = trainer.train_epoch()

            model.phase = 'test'
            original_z = model.encode(original_x)
            recon_x = model.decode(original_z)
            samples_x = model.decode(samples_z)
            recon_x = img_inverse_transform(recon_x)
            samples_x = img_inverse_transform(model.decode(samples_z))
            recon_video.append(dp.misc.img_tile(recon_x))
            sample_video.append(dp.misc.img_tile(samples_x))
            likelihood = model.likelihood(test_feed)
            print(
                'epoch %i   Train loss:%.4f  Test likelihood:%.4f  Learn Rate:%.4f'
                %
                (e, np.mean(loss), np.mean(likelihood), learn_rule.learn_rate))
    except KeyboardInterrupt:
        pass
    print('Saving model to disk')
    with open(arch_path, 'wb') as f:
        pickle.dump((encoder, latent_encoder, decoder), f)

    model.phase = 'test'
    n_examples = 100
    test_feed.reset()
    original_x = np.array(test_feed.batches().next()[0])[:n_examples]
    samples_z = np.random.normal(size=(n_examples, n_hidden))
    output.samples(model, samples_z, out_dir, img_inverse_transform)
    output.reconstructions(model, original_x, out_dir, img_inverse_transform)
    original_z = model.encode(original_x)
    output.walk(model, original_z, out_dir, img_inverse_transform)
def run():
    n_hidden = 64
    ae_kind = 'variational'

    lr_start = 0.01
    lr_stop = 0.0001
    lr_gamma = 0.75
    n_epochs = 150
    epoch_size = 250
    batch_size = 64

    experiment_name = 'mnist_ae'
    experiment_name += '_nhidden%i' % n_hidden

    out_dir = os.path.join('out', experiment_name)
    arch_path = os.path.join(out_dir, 'arch.pickle')
    start_arch_path = arch_path
    start_arch_path = None

    print('experiment_name', experiment_name)
    print('start_arch_path', start_arch_path)
    print('arch_path', arch_path)

    # Setup network
    if start_arch_path is None:
        print('Creating new model')
        encoder, decoder, _ = architectures.mnist()
        if ae_kind == 'variational':
            latent_encoder = architectures.vae_latent_encoder(n_hidden)
        elif ae_kind == 'adversarial':
            latent_encoder = architectures.aae_latent_encoder(n_hidden)
    else:
        print('Starting from %s' % start_arch_path)
        with open(start_arch_path, 'rb') as f:
            decoder, discriminator = pickle.load(f)

    model = ae.Autoencoder(
        encoder=encoder,
        latent_encoder=latent_encoder,
        decoder=decoder,
    )
    model.recon_error = ae.NLLNormal()

    # Fetch dataset
    dataset = dp.dataset.MNIST()
    x_train, y_train, x_test, y_test = dataset.arrays()
    x_train = mnist_transform(x_train)
    x_test = mnist_transform(x_test)

    # Prepare network feeds
    train_feed = dp.Feed(x_train, batch_size, epoch_size)
    test_feed = dp.Feed(x_test, batch_size)

    # Plotting
    n_examples = 64
    original_x, = test_feed.batches().next()
    original_x = np.array(original_x)[:n_examples]
    samples_z = np.random.normal(size=(n_examples, n_hidden))
    samples_z = (samples_z).astype(dp.float_)

    # Train network
    learn_rule = dp.RMSProp()
    trainer = dp.GradientDescent(model, train_feed, learn_rule)
    annealer = dp.GammaAnnealer(lr_start, lr_stop, n_epochs, gamma=lr_gamma)
    try:
        recon_video = Video(os.path.join(out_dir, 'convergence_recon.mp4'))
        sample_video = Video(os.path.join(out_dir, 'convergence_samples.mp4'))
        sp.misc.imsave(os.path.join(out_dir, 'examples.png'),
                       dp.misc.img_tile(mnist_inverse_transform(original_x)))
        for e in range(n_epochs):
            model.phase = 'train'
            model.setup(*train_feed.shapes)
            learn_rule.learn_rate = annealer.value(e) / batch_size
            loss = trainer.train_epoch()

            model.phase = 'test'
            original_z = model.encode(original_x)
            recon_x = model.decode(original_z)
            samples_x = model.decode(samples_z)
            recon_x = mnist_inverse_transform(recon_x)
            samples_x = mnist_inverse_transform(model.decode(samples_z))
            recon_video.append(dp.misc.img_tile(recon_x))
            sample_video.append(dp.misc.img_tile(samples_x))
            likelihood = model.likelihood(test_feed)
            print('epoch %i   Train loss:%.4f  Test likelihood:%.4f' %
                  (e, np.mean(loss), np.mean(likelihood)))
    except KeyboardInterrupt:
        pass
    print('Saving model to disk')
    with open(arch_path, 'wb') as f:
        pickle.dump((decoder, discriminator), f)

    model.phase = 'test'
    n_examples = 100
    samples_z = np.random.normal(size=(n_examples, n_hidden)).astype(dp.float_)
    output.samples(model, samples_z, out_dir, mnist_inverse_transform)
    output.walk(model, samples_z, out_dir, mnist_inverse_transform)