Example #1
0
def f_plane_init_u_test(physics, aro_exec, dt):
    nx = 100
    ny = 100
    layers = 1

    dx = 10e3
    dy = 10e3

    rho0 = 1035.

    grid = aro.Grid(nx, ny, layers, dx, dy)

    def init_U(X, Y, *arg):
        init_u = np.zeros(Y.shape, dtype=np.float64)
        init_u[int(grid.nx / 2), int(grid.ny / 2)] = 3e-5
        init_u[:, :] = 3e-5

        if not arg:
            plt.figure()
            plt.pcolormesh(init_u)
            plt.colorbar()
            plt.savefig('init_u.png')
        return init_u

    def init_V(X, Y, *arg):
        init_v = np.zeros(X.shape, dtype=np.float64)
        init_v[int(nx / 2), int(ny / 2)] = 3e-5
        init_v[:, :] = 3e-5

        if not arg:
            plt.figure()
            plt.pcolormesh(init_v)
            plt.colorbar()
            plt.savefig('init_v.png')
        return init_v

    def dbl_periodic_wetmask(X, Y):
        return np.ones(X.shape, dtype=np.float64)

    with working_directory(
            p.join(self_path,
                   "physics_tests/f_plane_{0}_init_u".format(physics))):

        sub.check_call(["rm", "-rf", "output/"])
        drv.simulate(
            initHfile=[400.],
            initUfile=[init_U],
            # initVfile=[init_V], valgrind=False,
            wetMaskFile=[dbl_periodic_wetmask],
            nx=nx,
            ny=ny,
            exe=aro_exec,
            dx=dx,
            dy=dy,
            nTimeSteps=40000)

        hfiles = sorted(glob.glob("output/snap.h.*"))
        ufiles = sorted(glob.glob("output/snap.u.*"))
        vfiles = sorted(glob.glob("output/snap.v.*"))

        model_iteration = np.zeros(len(hfiles))

        energy = np.zeros(len(hfiles))
        energy_expected = np.zeros(len(hfiles))

        momentum = np.zeros(len(hfiles))
        momentum_expected = np.zeros(len(hfiles))

        volume = np.zeros(len(hfiles))

        for counter, ufile in enumerate(ufiles):

            h = aro.interpret_raw_file(hfiles[counter], nx, ny, layers)
            u = aro.interpret_raw_file(ufile, nx, ny, layers)
            v = aro.interpret_raw_file(vfiles[counter], nx, ny, layers)

            model_iteration[counter] = float(ufile[-10:])

            # plt.figure()
            # plt.pcolormesh(grid.xp1,grid.y,u[:,:,0].transpose())
            # plt.colorbar()
            # plt.savefig('u.{0}.png'.format(ufile[-10:]),dpi=150)
            # plt.close()

            # plt.figure()
            # plt.pcolormesh(grid.x,grid.y,h[:,:,0].transpose())
            # plt.colorbar()
            # plt.savefig('h.{0}.png'.format(ufile[-10:]),dpi=150)
            # plt.close()

            energy[counter] = nx * ny * (dx * dy * rho0 * (np.sum(
                np.absolute(h * (u[:, :, 1:]**2 + u[:, :, :-1]**2) / 4.) /
                2.) + np.sum(
                    np.absolute(h *
                                (v[:, 1:, :]**2 + v[:, :-1, :]**2) / 4.) / 2.))
                                         + dx * dy * rho0 * 0.01 *
                                         np.sum(np.absolute(h - 400.)))

            momentum[counter] = nx * ny * dx * dy * rho0 * (
                np.sum(np.absolute(h * (u[:, :, 1:] + u[:, :, :-1]) / 2.)) +
                np.sum(np.absolute(h * (v[:, 1:, :] + v[:, :-1, :]) / 2.)))

            volume[counter] = np.sum(h)

            # plt.figure()
            # plt.pcolormesh(grid.xp1, grid.y, np.transpose(u[:,:,0]))
            # plt.colorbar()
            # plt.savefig('output/u.{0}.png'.format(model_iteration[counter]),dpi=100)
            # plt.close()

        opt.assert_volume_conservation(nx, ny, layers, 1e-9)

        X, Y = np.meshgrid(grid.xp1, grid.y)
        init_u = aro.interpret_raw_file(ufiles[1], nx, ny,
                                        layers)  #init_U(X, Y, True)

        X, Y = np.meshgrid(grid.x, grid.yp1)
        init_v = aro.interpret_raw_file(vfiles[1], nx, ny,
                                        layers)  #init_V(X, Y, True)

        energy_expected[:] = nx * ny * (dx * dy * rho0 * (np.sum(
            np.absolute(400. *
                        (init_u[:, :, 1:]**2 + init_u[:, :, :-1]**2) / 4.) /
            2.) + np.sum(
                np.absolute(400. *
                            (init_v[:, 1:, :]**2 + init_v[:, :-1, :]**2) / 4.)
                / 2.)))

        momentum_expected[:] = nx * ny * dx * dy * rho0 * (
            np.sum(np.absolute(h *
                               (init_u[:, :, 1:] + init_u[:, :, :-1]) / 2.)) +
            np.sum(np.absolute(h *
                               (init_v[:, 1:, :] + init_v[:, :-1, :]) / 2.)))

        # print momentum[0]/momentum_expected[0]

        #assert np.amax(array_relative_error(ans, good_ans)) < rtol
        plt.figure()
        #plt.plot(model_iteration, energy_expected, '-o', alpha=0.5,
        #        label='Expected energy')
        plt.plot(model_iteration * dt / (86400),
                 energy,
                 '-',
                 alpha=1,
                 label='Simulated energy')
        plt.legend()
        plt.xlabel('Time (days)')
        plt.ylabel('Energy')
        plt.savefig('f_plane_energy_test.png', dpi=150)

        plt.figure()
        plt.plot(model_iteration * dt / (86400), energy / energy_expected)
        plt.xlabel('timestep')
        plt.ylabel('simulated/expected')
        plt.savefig('energy_ratio.png')
        plt.close()

        plt.figure()
        plt.plot(model_iteration, volume)
        plt.ylabel('Volume')
        plt.xlabel('timestep')
        plt.savefig('volume.png')
        plt.close()

        plt.figure()
        plt.plot(model_iteration * dt / (86400),
                 momentum,
                 '-',
                 alpha=1,
                 label='Simulated momentum')
        plt.legend()
        plt.xlabel('Time (days)')
        plt.ylabel('Momentum')
        plt.savefig('f_plane_momentum_test.png', dpi=150)

        plt.figure()
        plt.plot(model_iteration, momentum / momentum_expected)
        plt.xlabel('timestep')
        plt.ylabel('simulated/expected')
        plt.savefig('momentum_ratio.png')
        plt.close()

        plt.figure()
        plt.plot(model_iteration * dt / (86400),
                 100. * (momentum - momentum_expected) / momentum_expected)
        plt.xlabel('Time (days)')
        plt.ylabel('percent error')
        plt.ylim(-20, 80)
        plt.savefig('momentum_percent_error.png')
        plt.close()
Example #2
0
def test_f_plane_Hypre_botDrag(botDrag=1e-5, layers=1):

    test_executable = "aronnax_external_solver_test"

    dt = 100

    nx = 10
    ny = 10
    dx = 1e3
    dy = 1e3

    rho0 = 1035.

    grid = aro.Grid(nx, ny, layers, dx, dy)

    def init_U(X, Y, *arg):
        init_u = np.zeros(Y.shape, dtype=np.float64)
        init_u[:, :] = 3e-5

        return init_u

    def dbl_periodic_wetmask(X, Y):
        return np.ones(X.shape, dtype=np.float64)

    with working_directory(p.join(self_path, "bot_drag")):

        if layers == 1:
            drv.simulate(initHfile=[400.],
                         initUfile=[init_U],
                         depthFile=[layers * 400],
                         exe=test_executable,
                         wetMaskFile=[dbl_periodic_wetmask],
                         nx=nx,
                         ny=ny,
                         dx=dx,
                         dy=dy,
                         dt=dt,
                         dumpFreq=200,
                         diagFreq=dt,
                         botDrag=botDrag,
                         nTimeSteps=400)
        else:
            drv.simulate(initHfile=[400. for i in range(layers)],
                         initUfile=[init_U for i in range(layers)],
                         depthFile=[layers * 400],
                         exe=test_executable,
                         wetMaskFile=[dbl_periodic_wetmask],
                         nx=nx,
                         ny=ny,
                         layers=layers,
                         dx=dx,
                         dy=dy,
                         dt=dt,
                         dumpFreq=200,
                         diagFreq=dt,
                         botDrag=botDrag,
                         nTimeSteps=400)

        hfiles = sorted(glob.glob("output/snap.h.*"))
        ufiles = sorted(glob.glob("output/snap.u.*"))
        vfiles = sorted(glob.glob("output/snap.v.*"))

        model_iteration = np.zeros(len(hfiles))

        momentum = np.zeros(len(hfiles))
        momentum_expected = np.zeros(len(hfiles))

        for counter, ufile in enumerate(ufiles):

            h = aro.interpret_raw_file(hfiles[counter], nx, ny, layers)
            u = aro.interpret_raw_file(ufile, nx, ny, layers)
            v = aro.interpret_raw_file(vfiles[counter], nx, ny, layers)

            model_iteration[counter] = float(ufile[-10:])

            momentum[counter] = (
                nx * ny * dx * dy * rho0 *
                (np.mean(h[-1, :, :]) *
                 (np.mean(u[-1, :, :]) + np.mean(v[-1, :, :]))))

        opt.assert_volume_conservation(nx, ny, layers, 1e-9)

        init_h = 400
        X, Y = np.meshgrid(grid.x, grid.yp1)
        init_u = init_U(X, Y)

        momentum_expected[:] = (nx * ny * dx * dy * rho0 *
                                (np.mean(init_h) * np.mean(init_u[:, :])) *
                                np.exp(-model_iteration * dt * botDrag))

        test_passes = True

        try:
            np.testing.assert_allclose(momentum,
                                       momentum_expected,
                                       rtol=2e-3,
                                       atol=0)
            return
        except AssertionError as error:
            test_passes = False

            # plot output for visual inspection
            plt.figure()
            plt.plot(model_iteration * dt / (86400),
                     momentum,
                     '-',
                     alpha=1,
                     label='Simulated momentum')
            plt.plot(model_iteration * dt / (86400),
                     momentum_expected,
                     '-',
                     alpha=1,
                     label='Expected momentum')
            plt.legend()
            plt.xlabel('Time (days)')
            plt.ylabel('Momentum')
            plt.savefig('f_plane_momentum_test.png', dpi=150)

            plt.figure()
            plt.plot(model_iteration, momentum / momentum_expected)
            plt.xlabel('timestep')
            plt.ylabel('simulated/expected')
            plt.savefig('momentum_ratio.png')
            plt.close()

            plt.figure()
            plt.plot(model_iteration * dt / (86400),
                     100. * (momentum - momentum_expected) / momentum_expected)
            plt.xlabel('Time (days)')
            plt.ylabel('percent error')
            plt.ylim(-20, 80)
            plt.savefig('momentum_percent_error.png')
            plt.close()

        assert test_passes
Example #3
0
def f_plane_wind_test(physics, aro_exec, nx, ny, dx, dy, dt, nTimeSteps):

    layers = 1
    grid = aro.Grid(nx, ny, layers, dx, dy)

    rho0 = 1035.

    def wind_x(X, Y, *arg):
        wind_x = np.zeros(Y.shape, dtype=np.float64)
        wind_x[int(grid.nx / 2), int(grid.ny / 2)] = 1e-5

        if not arg:
            plt.figure()
            plt.pcolormesh(X / 1e3, Y / 1e3, wind_x)
            plt.colorbar()
            plt.savefig('wind_x.png')
            plt.close()
        return wind_x

    def wind_y(X, Y, *arg):
        wind_y = np.zeros(X.shape, dtype=np.float64)
        wind_y[int(grid.nx / 2), int(grid.ny / 2)] = 1e-5

        if not arg:
            plt.figure()
            plt.pcolormesh(X / 1e3, Y / 1e3, wind_y)
            plt.colorbar()
            plt.savefig('wind_y.png')
            plt.close()
        return wind_y

    def dbl_periodic_wetmask(X, Y):
        return np.ones(X.shape, dtype=np.float64)

    with opt.working_directory(
            p.join(self_path,
                   "physics_tests/f_plane_{0}_wind".format(physics))):

        sub.check_call(["rm", "-rf", "output/"])
        drv.simulate(initHfile=[400.],
                     zonalWindFile=[wind_x],
                     meridionalWindFile=[wind_y],
                     valgrind=False,
                     nx=nx,
                     ny=ny,
                     exe=aro_exec,
                     dx=dx,
                     dy=dy,
                     wetMaskFile=[dbl_periodic_wetmask],
                     dt=dt,
                     dumpFreq=int(dt * nTimeSteps / 50),
                     nTimeSteps=nTimeSteps)

        hfiles = sorted(glob.glob("output/snap.h.*"))
        ufiles = sorted(glob.glob("output/snap.u.*"))
        vfiles = sorted(glob.glob("output/snap.v.*"))

        # expect the momentum to grow according to u*h*rho0 = delta_t * wind
        # F = m * a
        # m * v = h * rho0 * xlen * ylen * v
        #       = m * a * dt
        #       = F * dt
        #       = wind * dx * dy * dt

        momentum = np.zeros(len(hfiles), dtype=np.float64)
        model_iteration = np.zeros(len(hfiles), dtype=np.float64)

        momentum_expected = np.zeros(len(hfiles), dtype=np.float64)

        volume = np.zeros(len(hfiles))

        for counter, ufile in enumerate(ufiles):

            h = aro.interpret_raw_file(hfiles[counter], nx, ny, layers)
            u = aro.interpret_raw_file(ufile, nx, ny, layers)
            v = aro.interpret_raw_file(vfiles[counter], nx, ny, layers)

            model_iteration[counter] = float(ufile[-10:])

            # plt.figure()
            # plt.pcolormesh(grid.xp1,grid.y,u[:,:,0].transpose())
            # plt.colorbar()
            # plt.savefig('u.{0}.png'.format(ufile[-10:]),dpi=150)
            # plt.close()

            # plt.figure()
            # plt.pcolormesh(grid.x,grid.y,h[:,:,0].transpose())
            # plt.colorbar()
            # plt.savefig('h.{0}.png'.format(ufile[-10:]),dpi=150)
            # plt.close()

            momentum[counter] = dx * dy * rho0 * (
                np.sum(np.absolute(h * (u[:, :, 1:] + u[:, :, :-1]) / 2.)) +
                np.sum(np.absolute(h * (v[:, 1:, :] + v[:, :-1, :]) / 2.)))

            momentum_expected[counter] = 2. * dx * dy * 1e-5 * (
                model_iteration[counter] + 2) * dt

            volume[counter] = np.sum(dx * dy * h)

            # plt.figure()
            # plt.pcolormesh(grid.xp1, grid.y, np.transpose(u[:,:,0]))
            # plt.colorbar()
            # plt.savefig('output/u.{0}.png'.format(model_iteration[counter]),dpi=100)
            # plt.close()

        opt.assert_volume_conservation(nx, ny, layers, 1e-9)

        plt.figure()
        plt.plot(model_iteration * dt / (30 * 86400),
                 momentum_expected,
                 '-',
                 alpha=1,
                 label='Expected momentum')
        plt.plot(model_iteration * dt / (30 * 86400),
                 momentum,
                 '-',
                 alpha=1,
                 label='Simulated momentum')
        plt.legend()
        plt.xlabel('Time (months)')
        plt.ylabel('Momentum')
        plt.savefig('f_plane_momentum_test.png', dpi=150)
        plt.close()

        plt.figure()
        plt.plot(model_iteration, momentum / momentum_expected)
        plt.xlabel('timestep')
        plt.ylabel('simulated/expected')
        plt.title('final ratio = {0}'.format(
            str(momentum[-1] / momentum_expected[-1])))
        plt.savefig('ratio.png')
        plt.close()

        plt.figure()
        plt.plot(model_iteration,
                 100. * (momentum - momentum_expected) / momentum_expected)
        plt.xlabel('timestep')
        plt.ylabel('percent error')
        plt.ylim(-4, 4)
        plt.savefig('percent_error.png')
        plt.close()

        plt.figure()
        plt.plot(model_iteration, momentum - momentum_expected)
        plt.xlabel('timestep')
        plt.ylabel('simulated - expected')
        plt.savefig('difference.png')
        plt.close()

        plt.figure()
        plt.plot(model_iteration, volume)
        plt.ylabel('Volume')
        plt.xlabel('timestep')
        plt.ylim(np.min(volume), np.max(volume))
        plt.savefig('volume.png')
        plt.close()

        percent_error = 100. * (momentum -
                                momentum_expected) / momentum_expected

        return percent_error[-1]