def execute(self, symbols_and_signs_dataframe, startdate, enddate,
                permutations, annualized_or_cumulative):
        import config
        import mytools
        import datetime
        import os
        import outputefficientfrontier as oef
        a = list([
            symbols_and_signs_dataframe.index.tolist(),
            symbols_and_signs_dataframe['longshort'].tolist()
        ])
        symbols_and_signs_list = zip(*a)

        #print symbols_and_signs_list
        #stop
        #symbols = [i[0] for i in symbols_and_signs_list]
        #longshortlist = [i[1] for i in symbols_and_signs_list]
        #symbols_and_signs_list = xxx
        o = oef.output(symbols_and_signs_list, startdate, enddate,
                       permutations, annualized_or_cumulative)
        d = o.DictionaryOfOutputFiles
        for k, v in d.items():
            #print k, v
            (f_path, filename) = os.path.split(v)
            date14 = filename.split(' ')[0]
        print date14
        mycachefolder = config.mycachefolder
        mytools.general().make_sure_path_exists(mycachefolder)
        #date14 = str(datetime.datetime.now().strftime("%Y%m%d%H%M%S"))
        cachedfilepathname = mycachefolder
        cachedfilepathname = os.path.join(cachedfilepathname,
                                          date14 + ' compiled.xlsx')

        import xlsxwriter
        import glob
        import csv
        import numbers
        workbook = xlsxwriter.Workbook(cachedfilepathname,
                                       {'strings_to_numbers': True})
        #for filename in glob.glob("*.csv"):
        for k, v in d.items():
            #print k, v
            (f_path, filename) = os.path.split(v)
            worksheetname = str(filename.split('.')[0])
            worksheetname = worksheetname.split(' ')[1]
            ws = workbook.add_worksheet(worksheetname)
            spamReader = csv.reader(open(v, 'rb'), delimiter=',')
            row_count = 0
            #print filename
            for row in spamReader:
                for col in range(len(row)):
                    n = row[col]
                    ws.write(row_count, col, n)
                row_count += 1

        workbook.close()
        self.PathnameToCompiledWorkbook = cachedfilepathname
        print 'you can find your compileclass file here: ', cachedfilepathname
Example #2
0
"""
Created on Wed Jul 29 17:31:47 2015

@author: justin.malinchak
"""

# -*- coding: utf-8 -*-
"""
Created on Wed Jul 29 17:18:11 2015

@author: justin.malinchak
"""


import outputefficientfrontier as oef
#               # Use this one to test Yahoo
#    o = output(      list_of_symbols = ['WMT','NKE','T','MCD','JPM','^RUT'] 
#                     ,  startdate_string = '2014-12-31'
#                     ,  enddate_string = '2016-03-31'
#                     ,  period = 'monthly'
#                     ,  pctchangeorlogreturn = 'pctchange'
#                     ,  source = 'Yahoo'
#              )

o = oef.output(['Mellon Capital Large Cap Core','Boston Co US Mid Cap Growt','Harding Loevner Glob Eq ADR','Logan Capital Concentrated Val']
            ,  startdate_string = '2012-12-31'
            ,  enddate_string = '2016-03-31' #'2013-12-31'
            ,  period='Monthly'
            ,  pctchangeorlogreturn = 'pctchange'
            ,  source='local'
            ) 
Example #3
0
    def tryit(self
              , list_of_symbols 
              , startdatestring 
              , enddate_string 
              , returnsmonthlyordaily
              , pctchangeorlogreturn
              , numberofpermutations , optimalpctasdecimal 
              ):
        import xlsxwriter
        # ##########
        # Date setup
        import datetime
        today_datetime = datetime.datetime.today()
        #today_date = datetime.date.today()
        #print today_date
        today_datetime_string_forfilename = today_datetime.strftime('%Y%m%d%H%M%S')
        print today_datetime_string_forfilename
        finalfilename =  today_datetime_string_forfilename+'.xlsx'
        inputfilename = today_datetime_string_forfilename+'-temp.xlsx'
        #self.createworkbook(config.myoutputpath+'\\'+inputfilename)
                # Create an new Excel file and add a worksheet.
        

        #if os.path.isfile(config.myoutputpath+'\\'+inputfilename):
        # ------------------------------------
        # Get the data first
        import outputefficientfrontier as oef
        o = oef.output( list_of_symbols
                        ,  startdatestring
                        ,  enddate_string
                        ,  returnsmonthlyordaily
                        ,  pctchangeorlogreturn
                    ) 
#            for index, row in df.iterrows():
#                try:
#                    fartomidpricechangedelta = (row['priceDaysBackMid'] - row['priceDaysBackFar']) / row['priceDaysBackFar']

        # --------------------------------
        # Then open the workbook here
        #from win32com.client import Dispatch
        #xlApp = Dispatch("Excel.Application")
        #xlApp.Visible = 1
        #workbook = xlApp.Workbooks.Open(config.myoutputpath+'\\'+inputfilename)
        workbook = xlsxwriter.Workbook(config.myoutputpath+'\\'+inputfilename)
        formatdate = workbook.add_format()
        formatcolumnheader = workbook.add_format()
        
        formatdate.set_num_format('yyyy-mm-dd')  # Format string.
        formatcolumnheader.set_num_format(0x0F)          # Format index.
      
        # --------------------------------
        # Then populate the worksheet here - returns
        worksheet = workbook.add_worksheet()
        worksheet.name = 'pricehistory'
        df = o.EfficientFrontierObject.PriceHistoryDataframe
        #print df
        titlesrow = 3
        titlescolumn = 3
        rowid = 0
        colid = 0
        for cname in df.columns:
            #print 'column',cname
            colid = colid + 1
            worksheet.write(titlesrow,titlescolumn+colid,cname)
            #worksheet.Cells(titlesrow,titlescolumn+colid).Value = cname
            
        for index, row in df.iterrows():
            rowid = rowid + 1
            worksheet.write(titlesrow + rowid,titlescolumn,index,formatdate)
            
            #worksheet.Cells(titlesrow + rowid,titlescolumn).Value = index
            #print 'x'
            colid = 0
            #for cl in row:
            for cname in df.columns:
                colid = colid + 1
                #print rowid,colid,cl
                #print str(df.loc[index][cname]) == str('nan')
                if not str(df.loc[index][cname]) == str('nan'):
                    worksheet.write(titlesrow+rowid,titlescolumn+colid,df.loc[index][cname])
                    #worksheet.Cells(titlesrow+rowid,titlescolumn+colid).Value = df.loc[index][cname]

        # --------------------------------
        # Then populate the worksheet here - returns
        worksheet = workbook.add_worksheet()
        worksheet.name = 'returns'
        df = o.EfficientFrontierObject.ReturnsDataframe
        #print df
        titlesrow = 3
        titlescolumn = 3
        rowid = 0
        colid = 0
        for cname in df.columns:
            #print 'column',cname
            colid = colid + 1
            worksheet.write(titlesrow,titlescolumn+colid,cname)
            #worksheet.Cells(titlesrow,titlescolumn+colid).Value = cname
            
        for index, row in df.iterrows():
            rowid = rowid + 1
            worksheet.write(titlesrow + rowid,titlescolumn,index,formatdate)
            
            #worksheet.Cells(titlesrow + rowid,titlescolumn).Value = index
            #print 'x'
            colid = 0
            #for cl in row:
            for cname in df.columns:
                colid = colid + 1
                #print rowid,colid,cl
                #print str(df.loc[index][cname]) == str('nan')
                if not str(df.loc[index][cname]) == str('nan'):
                    worksheet.write(titlesrow+rowid,titlescolumn+colid,df.loc[index][cname])
                    #worksheet.Cells(titlesrow+rowid,titlescolumn+colid).Value = df.loc[index][cname]

        # --------------------------------
        # Then populate the worksheet here - annualizedreturnseries
        worksheet = workbook.add_worksheet()
        worksheet.name = 'annualizedreturns'
        #print df
        titlesrow = 3
        titlescolumn = 3
        rowid = 0
        colid = 0
        worksheet.write(titlesrow+1,titlescolumn,'annualizedreturns')
        for cname in o.EfficientFrontierObject.ReturnsDataframe:
            #print 'column',cname
            colid = colid + 1
            worksheet.write(titlesrow,titlescolumn+colid,cname)
            annualizedreturnvalue = o.EfficientFrontierObject.AnnualizedReturnsSeries[cname]
            worksheet.write(titlesrow+1,titlescolumn+colid,annualizedreturnvalue)
            #worksheet.Cells(titlesrow,titlescolumn+colid).Value = cname
            
        
        # ---------------------------------------------------
        # Then populate the worksheet here - covariancematrix
        worksheet = workbook.add_worksheet()
        worksheet.name = 'covariancematrix'
        df = o.EfficientFrontierObject.covariancematrix()                    
        
        titlesrow = 3
        titlescolumn = 3
        rowid = 0
        colid = 0
        for cname in df.columns:
            #print 'column',cname
            colid = colid + 1
            worksheet.write(titlesrow,titlescolumn+colid, cname)
            #worksheet.Cells(titlesrow,titlescolumn+colid).Value = cname
            
        for index, row in df.iterrows():
            rowid = rowid + 1
            worksheet.write(titlesrow + rowid,titlescolumn,index)
            #worksheet.Cells(titlesrow + rowid,titlescolumn).Value = index
            #print 'x'
            colid = 0
            for cl in row:
                colid = colid + 1
                #print rowid,colid,cl
                worksheet.write(titlesrow+rowid,titlescolumn+colid,cl)
                #worksheet.Cells(titlesrow+rowid,titlescolumn+colid).Value = cl

        # ----------------------------------------------------
        # Then populate the worksheet here - correlationmatrix
        worksheet = workbook.add_worksheet()
        worksheet.name = 'correlationmatrix'
        df = o.EfficientFrontierObject.correlationmatrix()                    
        
        titlesrow = 3
        titlescolumn = 3
        rowid = 0
        colid = 0
        for cname in df.columns:
            #print 'column',cname
            colid = colid + 1
            worksheet.write(titlesrow,titlescolumn+colid, cname)
            #worksheet.Cells(titlesrow,titlescolumn+colid).Value = cname
            
        for index, row in df.iterrows():
            rowid = rowid + 1
            worksheet.write(titlesrow + rowid,titlescolumn,index)
            #worksheet.Cells(titlesrow + rowid,titlescolumn).Value = index
            #print 'x'
            colid = 0
            for cl in row:
                colid = colid + 1
                #print rowid,colid,cl
                worksheet.write(titlesrow+rowid,titlescolumn+colid,cl)
                #worksheet.Cells(titlesrow+rowid,titlescolumn+colid).Value = cl



        # ----------------------------------------------------
        # Build the drawsail object
        drawsailfilepath = o.drawsail(numberofpermutations , optimalpctasdecimal )

        # ----------------------------------------------------
        # Then populate the worksheet here - PermutationsDataframe
        worksheet = workbook.add_worksheet()
        worksheet.name = 'permutations'
        df = o.PermutationsDataframe                    
        #print df
        
        titlesrow = 3
        titlescolumn = 3
        rowid = 0
        colid = 0
        for cname in df.columns:
            #print 'column',cname
            colid = colid + 1
            worksheet.write(titlesrow,titlescolumn+colid, cname)
            #worksheet.Cells(titlesrow,titlescolumn+colid).Value = cname
            
        for index, row in df.iterrows():
            rowid = rowid + 1
            worksheet.write(titlesrow + rowid,titlescolumn,index)
            #worksheet.Cells(titlesrow + rowid,titlescolumn).Value = index
            #print 'x'
            colid = 0
            for cl in row:
                colid = colid + 1
                #print rowid,colid,cl
                worksheet.write(titlesrow+rowid,titlescolumn+colid,cl)
                #worksheet.Cells(titlesrow+rowid,titlescolumn+colid).Value = cl

        # ----------------------------------------------------
        # Then populate the worksheet here - drawsail
        worksheet = workbook.add_worksheet()
        worksheet.name = 'drawsail'        
        #print '---- drawsail filepath -----'
        #print drawsailfilepath        
        # To set column width
        #worksheet.set_column('B:B', 30)        
        # Insert an image.
        worksheet.insert_image('D4', drawsailfilepath)


        # ----------------------------------------------------
        # Close the workbook and rename it properly
        workbook.close() # see note 1
        #xlApp.Quit()
        #xlApp.Visible = 0 # see note 2
        #del xlApp
        os.rename(config.myoutputpath+'\\'+inputfilename,config.myoutputpath+'\\'+finalfilename)
    def tryit(self, list_of_symbols, startdatestring, returnsmonthlyordaily):
        # ##########
        # Date setup
        import datetime
        today_datetime = datetime.datetime.today()
        #today_date = datetime.date.today()
        #print today_date
        today_datetime_string = today_datetime.strftime('%Y%m%d%H%M%S')
        print today_datetime_string
        finalfilename = today_datetime_string + '.xls'
        inputfilename = today_datetime_string + '-temp.xls'
        self.createworkbook(config.myoutputpath + '\\' + inputfilename)
        if os.path.isfile(config.myoutputpath + '\\' + inputfilename):
            # ------------------------------------
            # Get the data first
            import outputefficientfrontier as oef
            o = oef.output(list_of_symbols, startdatestring,
                           returnsmonthlyordaily)

            #            for index, row in df.iterrows():
            #                try:
            #                    fartomidpricechangedelta = (row['priceDaysBackMid'] - row['priceDaysBackFar']) / row['priceDaysBackFar']

            # --------------------------------
            # Then open the workbook here
            from win32com.client import Dispatch
            xlApp = Dispatch("Excel.Application")
            xlApp.Visible = 1
            wb = xlApp.Workbooks.Open(config.myoutputpath + '\\' +
                                      inputfilename)

            # --------------------------------
            # Then populate the worksheet here
            df = o.EfficientFrontierObject.ReturnsDataframe
            #print df
            titlesrow = 3
            titlescolumn = 3
            rowid = 0
            colid = 0
            for cname in df.columns:
                #print 'column',cname
                colid = colid + 1
                wb.Sheets('returns').Cells(titlesrow,
                                           titlescolumn + colid).Value = cname

            for index, row in df.iterrows():
                rowid = rowid + 1
                wb.Sheets('returns').Cells(titlesrow + rowid,
                                           titlescolumn).Value = index
                #print 'x'
                colid = 0
                #for cl in row:
                for cname in df.columns:
                    colid = colid + 1
                    #print rowid,colid,cl
                    #print str(df.loc[index][cname]) == str('nan')
                    if not str(df.loc[index][cname]) == str('nan'):

                        wb.Sheets('returns').Cells(
                            titlesrow + rowid,
                            titlescolumn + colid).Value = df.loc[index][cname]

            # --------------------------------
            # Then populate the worksheet here - covariancematrix
            df = o.EfficientFrontierObject.covariancematrix()

            titlesrow = 3
            titlescolumn = 3
            rowid = 0
            colid = 0
            for cname in df.columns:
                #print 'column',cname
                colid = colid + 1
                wb.Sheets('covariancematrix').Cells(titlesrow, titlescolumn +
                                                    colid).Value = cname

            for index, row in df.iterrows():
                rowid = rowid + 1
                wb.Sheets('covariancematrix').Cells(titlesrow + rowid,
                                                    titlescolumn).Value = index
                #print 'x'
                colid = 0
                for cl in row:
                    colid = colid + 1
                    #print rowid,colid,cl
                    wb.Sheets('covariancematrix').Cells(
                        titlesrow + rowid, titlescolumn + colid).Value = cl
            wb.Close(SaveChanges=1)  # see note 1
            xlApp.Quit()
            xlApp.Visible = 0  # see note 2
            del xlApp
            os.rename(config.myoutputpath + '\\' + inputfilename,
                      config.myoutputpath + '\\' + finalfilename)
Example #5
0
"""

import outputefficientfrontier as oef
#               # Use this one to test Yahoo
#    o = output(      list_of_symbols = ['WMT','NKE','T','MCD','JPM','^RUT']
#                     ,  startdate_string = '2014-12-31'
#                     ,  enddate_string = '2016-03-31'
#                     ,  period = 'monthly'
#                     ,  pctchangeorlogreturn = 'pctchange'
#                     ,  source = 'Yahoo'
#              )

o = oef.output(
    ['Hilton Capital YP', 'Blue Shores Cap GLSE'],
    startdate_string='2012-12-31',
    enddate_string='2016-03-31'  #'2013-12-31'
    ,
    period='Monthly',
    pctchangeorlogreturn='pctchange',
    source='local')

print o.EfficientFrontierObject.correlationmatrix()
print o.EfficientFrontierObject.covariancematrix
print o.EfficientFrontierObject.ReturnsDataframe
#print ' ---- here is just one random weight Series... ----'
#print o.EfficientFrontierObject.portfolioriskreturnrandomweight()
print o.drawsail(5000, 0.90)
'''
1919 Inv Csl Institutional Eq
1919 Inv Csl SRI SRI Equity
1919 Inv Csl SRI SRI Growth Eq
1919 Inv Csl SRI SRI Intl ADR EQ
Example #6
0
    print 'enddate_string', enddate_string
    period = sys.argv[4]
    print 'period', period

    pctchangeorlogreturn = sys.argv[5]
    print 'pctchangeorlogreturn', pctchangeorlogreturn
    source = sys.argv[6]
    print 'source', source
    permutations = sys.argv[7]
    print 'permutations', permutations

    import outputefficientfrontier as oef
    oef.output(
        json_string_of_symbols_and_weights=json_string_of_symbols_and_weights,
        startdate_string=startdate_string,
        enddate_string=enddate_string,
        period=period,
        pctchangeorlogreturn=pctchangeorlogreturn,
        source=source)
    print oef.drawsail(permutations, 0.92)

#
#    json_string = '{"Granite Partners Small Core Plus":[0.5,0.2],"Harding Loevner Glob Eq ADR":[0.5,0.1],"Logan Capital Concentrated Val":[0.5,0.1],"Hilton Capital YP":[0.4,0.05]}'
#    #mySymbolsDict = json.loads(json_string)    # obj now contains a dict of the data
#    #print mySymbolsDict
#    import outputefficientfrontier
#    o = outputefficientfrontier.output(    json_string
#                ,  startdate_string = '2013-12-31'
#                ,  enddate_string = '2016-03-31' #'2013-12-31'
#                ,  period='Monthly'
#                ,  pctchangeorlogreturn = 'pctchange'