import p2funcs as p2f x1 = ['a', 'b', 'c'] x2 = ['d', 'e', 'f'] #i_index, j_index = np.where(mat == chos_x ) mat1 = np.array([[1, 2, 3], [4, 5, 6], [4, 8, 9]]) mat2 = np.array([[11, 21, 31], [41, 51, 61], [71, 81, 91]]) mat3 = np.array([[1.1, 2.1, 3.1], [4.1, 5.1, 6.1], [7.1, 8.1, 9.1]]) matdict = {'1st': mat1, '2nd': mat2, '3rd': mat3} choicedict = '3rd' #print(matdict[choicedict]) dictmat = matdict[choicedict] max_auc = np.max(dictmat) i_index, j_index = np.where(dictmat == max_auc) print('Corresponding element in x1: %s\nCorresponding element in x2: %s' % (x1[i_index[0]], x2[j_index[0]])) array1 = [2, 2, 3, 3, 3, 4, 3, 5, 3, 6, 8] print(p2f.most_common(array1))
# Show optimal gamma #print('Optimal Tier 1 gamma for dataset %s found to be %s' %(dataset, opt_t1_gamma)) opt_t1_gammas.append(opt_t1_gamma) print("\n%.2f seconds elapsed so far.\n" % (time.time() - StartTime)) # End of dataset run print('\n###################################################################') # Print aggregate gamma values for i in range(len(opt_t1_gammas)): print('\nOptimal tier 1 gamma for dataset %s found to be %s' % (toy_dataset_list[i][0], opt_t1_gammas[i])) # Find most frequent gamma value t1_gamma_consensus = p2f.most_common(opt_t1_gammas) #Just in case last value selected: if t1_gamma_consensus == t1_gamma_list[-1]: t1_gamma_consensus = t1_gamma_list[-2] # Create tier 2 gamma list gamma_i_t1 = t1_gamma_list.index(t1_gamma_consensus) t2_gamma_list = list( p2f.frange(t1_gamma_list[gamma_i_t1 - 1], t1_gamma_list[gamma_i_t1], t1_gamma_list[gamma_i_t1 - 1])) + list( p2f.frange(t1_gamma_list[gamma_i_t1], t1_gamma_list[gamma_i_t1 + 1], t1_gamma_list[gamma_i_t1])) #t2_gamma_list = [t1_gamma_list[gamma_i_t1]]
opt_models_byg = [] #Find highest mean AUC in each dataset for 'optimal' gamma for i in range(len(amat_dict_list)): mat_dict = amat_dict_list[i] choice_auc_mat = mat_dict[opt_gamma] max_auc = np.max(choice_auc_mat) kpca_index, model_index = np.where(choice_auc_mat == max_auc) opt_kpca_byg = t2_kpcas[kpca_index] opt_kpcas_byg.append(opt_kpca_byg) opt_model_byg = t2_models[model_index] opt_models_byg.append(opt_model_byg) print('\nAt γ = %s, optimal KPCA is %s, whereas optimal KSVM is %s' % (opt_gamma, opt_kpca_byg, opt_model_byg)) opt_kpca = p2f.most_common(opt_kpcas_byg) opt_model = p2f.most_common(opt_models_byg) print( '\nOverall optimal KPCA/KSVM combination determined to be %s and %s respectively (γ = %s).' % s(opt_kpca, opt_model, gamma)) # End of dataset run print("\n%.2f seconds elapsed so far\n" % (time.time() - StartTime)) print( '\n###################################################################\n') #Calculate and display time taken or script to run print("\nTime taken for script to run is %.2f seconds\n" % (time.time() - StartTime))