Example #1
0
 def test_add_contact_with_existing_contact_in_replacement_cache(self):
     """
     Ensures that if the contact to be put in the replacement cache already
     exists in the replacement cache then it is bumped to the most recent
     position.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     # Fill up the bucket and replacement cache
     for i in range(40):
         contact = PeerNode(PUBLIC_KEY, '192.168.0.%d' % i, 9999,
                            self.version, 0)
         contact.network_id = hex(i)
         r.add_contact(contact)
     # Sanity check of the replacement cache.
     self.assertEqual(len(r._replacement_cache[0]), 20)
     self.assertEqual(hex(20), r._replacement_cache[0][0].network_id)
     # Create a new contact that will be added to the replacement cache.
     new_contact = PeerNode(PUBLIC_KEY, '192.168.0.20', 9999, self.version,
                            0)
     new_contact.network_id = hex(20)
     r.add_contact(new_contact)
     self.assertEqual(len(r._replacement_cache[0]), 20)
     self.assertEqual(new_contact, r._replacement_cache[0][19])
     self.assertEqual(hex(21), r._replacement_cache[0][0].network_id)
Example #2
0
    def test_find_close_nodes_in_correct_order(self):
        """
        Ensures that the nearest nodes are returned in the correct order: from
        the node closest to the target key to the node furthest away.
        """
        parent_node_id = '0xdeadbeef'
        r = RoutingTable(parent_node_id)
        # Fill up the bucket and replacement cache
        for i in range(512):
            contact = PeerNode(PUBLIC_KEY, "192.168.0.%d" % i, 9999,
                               self.version, 0)
            contact.network_id = hex(2 ** i)
            r.add_contact(contact)
        target_key = hex(2 ** 256)
        result = r.find_close_nodes(target_key)
        self.assertEqual(constants.K, len(result))

        # Ensure results are in the correct order.
        def key(node):
            return distance(node.network_id, target_key)
        sorted_nodes = sorted(result, key=key)
        self.assertEqual(sorted_nodes, result)
        # Ensure the order is from lowest to highest in terms of distance
        distances = [distance(x.network_id, target_key) for x in result]
        self.assertEqual(sorted(distances), distances)
Example #3
0
 def test_add_contact_with_full_replacement_cache(self):
     """
     Ensures that if the replacement cache is full (length = k) then the
     oldest contact within the cache is replaced with the new contact that
     was just seen.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     # Fill up the bucket and replacement cache
     for i in range(40):
         contact = PeerNode(PUBLIC_KEY, "192.168.0.%d" % i, 9999,
                            self.version, 0)
         contact.network_id = hex(i)
         r.add_contact(contact)
     # Sanity check of the replacement cache.
     self.assertEqual(len(r._replacement_cache[0]), 20)
     self.assertEqual(hex(20), r._replacement_cache[0][0].network_id)
     # Create a new contact that will be added to the replacement cache.
     new_contact = PeerNode(PUBLIC_KEY, "192.168.0.20", 9999, self.version,
                            0)
     new_contact.network_id = hex(40)
     r.add_contact(new_contact)
     self.assertEqual(len(r._replacement_cache[0]), 20)
     self.assertEqual(new_contact, r._replacement_cache[0][19])
     self.assertEqual(hex(21), r._replacement_cache[0][0].network_id)
Example #4
0
 def test_add_contact_with_parent_node_id(self):
     """
     If the newly discovered contact is, in fact, this node then it's not
     added to the routing table.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     contact = PeerNode(PUBLIC_KEY, '192.168.0.1', 9999, 0)
     contact.network_id = parent_node_id
     r.add_contact(contact)
     self.assertEqual(len(r._buckets[0]), 0)
Example #5
0
 def test_get_contact(self):
     """
     Ensures that the correct contact is returned.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     contact1 = PeerNode(PUBLIC_KEY, '192.168.0.1', 9999, self.version, 0)
     contact1.network_id = '0xa'
     r.add_contact(contact1)
     result = r.get_contact('0xa')
     self.assertEqual(contact1, result)
Example #6
0
 def test_find_close_nodes_fewer_than_K(self):
     """
     Ensures that all close nodes are returned if their number is < K.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     # Fill up the bucket and replacement cache
     for i in range(10):
         contact = PeerNode(PUBLIC_KEY, "192.168.0.%d" % i, 9999,
                            self.version, 0)
         contact.network_id = hex(i)
         r.add_contact(contact)
     result = r.find_close_nodes(hex(1))
     self.assertEqual(10, len(result))
Example #7
0
 def test_find_close_nodes_single_bucket(self):
     """
     Ensures K number of closest nodes get returned.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     # Fill up the bucket and replacement cache
     for i in range(40):
         contact = PeerNode(PUBLIC_KEY, "192.168.0.%d" % i, 9999,
                            self.version, 0)
         contact.network_id = hex(i)
         r.add_contact(contact)
     result = r.find_close_nodes(hex(1))
     self.assertEqual(constants.K, len(result))
Example #8
0
 def test_sort_peer_nodes_no_longer_than_k(self):
     """
     Ensure that no more than constants.K contacts are returned from the
     sort_peer_nodes function despite a longer list being passed in.
     """
     contacts = []
     for i in range(512):
         contact = PeerNode(PUBLIC_KEY, "192.168.0.%d" % i, 9999,
                            self.version, 0)
         contact.network_id = hex(2 ** i)
         contacts.append(contact)
     target_key = hex(2 ** 256)
     result = sort_peer_nodes(contacts, target_key)
     self.assertEqual(constants.K, len(result))
Example #9
0
 def test_find_close_nodes_multiple_buckets(self):
     """
     Ensures that nodes are returned from neighbouring k-buckets if the
     k-bucket containing the referenced ID doesn't contain K entries.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     # Fill up the bucket and replacement cache
     for i in range(512):
         contact = PeerNode(PUBLIC_KEY, "192.168.0.%d" % i, 9999,
                            self.version, 0)
         contact.network_id = hex(2 ** i)
         r.add_contact(contact)
     result = r.find_close_nodes(hex(2 ** 256))
     self.assertEqual(constants.K, len(result))
Example #10
0
 def test_add_contact_simple(self):
     """
     Ensures that a newly discovered node in the network is added to the
     correct bucket in the routing table.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     contact1 = PeerNode(PUBLIC_KEY, '192.168.0.1', 9999, 0)
     contact1.network_id = hex(2)
     contact2 = PeerNode(PUBLIC_KEY, '192.168.0.2', 9999, 0)
     contact2.network_id = hex(4)
     r.add_contact(contact1)
     self.assertEqual(len(r._buckets[0]), 1)
     r.add_contact(contact2)
     self.assertEqual(len(r._buckets[0]), 2)
Example #11
0
 def test_find_close_nodes_exclude_contact(self):
     """
     Ensure that nearest nodes are returned except for the specified
     excluded node.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     # Fill up the bucket and replacement cache
     for i in range(20):
         contact = PeerNode(PUBLIC_KEY, "192.168.0.%d" % i, 9999,
                            self.version, 0)
         contact.network_id = hex(i)
         r.add_contact(contact)
     result = r.find_close_nodes(hex(1), network_id=contact.network_id)
     self.assertEqual(constants.K - 1, len(result))
Example #12
0
 def test_get_contact(self):
     """
     Ensures it is possible to get a contact from the k-bucket with a valid
     id.
     """
     range_min = 12345
     range_max = 98765
     bucket = Bucket(range_min, range_max)
     for i in range(K):
         contact = PeerNode(PUBLIC_KEY, "192.168.0.%d" % i, 9999, 123)
         contact.network_id = hex(i)
         bucket.add_contact(contact)
     for i in range(K):
         self.assertTrue(bucket.get_contact(hex(i)),
                         "Could not get contact with id %d" % i)
Example #13
0
 def test_remove_contact(self):
     """
     Ensures it is possible to remove a contact with a certain ID from the
     k-bucket.
     """
     range_min = 12345
     range_max = 98765
     bucket = Bucket(range_min, range_max)
     for i in range(K):
         contact = PeerNode(PUBLIC_KEY, "192.168.0.%d" % i, 9999, 123)
         contact.network_id = hex(i)
         bucket.add_contact(contact)
     for i in range(K):
         bucket.remove_contact(hex(i))
         self.assertFalse(hex(i) in bucket._contacts,
                          "Could not remove contact with id %s" % hex(i))
Example #14
0
 def test_remove_contact_with_unknown_contact(self):
     """
     Ensures that attempting to remove a non-existent contact results in
     no change.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     contact1 = PeerNode(PUBLIC_KEY, '192.168.0.1', 9999, self.version, 0)
     contact1.network_id = '0xa'
     r.add_contact(contact1)
     # Sanity check
     self.assertEqual(len(r._buckets[0]), 1)
     result = r.remove_contact('0xb')
     self.assertEqual(None, result)
     self.assertEqual(len(r._buckets[0]), 1)
     self.assertEqual(contact1, r._buckets[0]._contacts[0])
Example #15
0
 def test_add_contact_with_blacklisted_contact(self):
     """
     If the newly discovered contact is, in fact, already in the local
     node's blacklist then ensure it doesn't get re-added.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     contact1 = PeerNode(PUBLIC_KEY, '192.168.0.1', 9999, 0)
     contact1.network_id = hex(2)
     contact2 = PeerNode(PUBLIC_KEY, '192.168.0.2', 9999, 0)
     contact2.network_id = hex(4)
     r.blacklist(contact2)
     r.add_contact(contact1)
     self.assertEqual(len(r._buckets[0]), 1)
     r.add_contact(contact2)
     self.assertEqual(len(r._buckets[0]), 1)
Example #16
0
    def test_remove_contact_with_cached_replacement(self):
        """
        Ensures that the removed contact is replaced by the most up-to-date
        contact in the affected k-bucket's cache.
        """
        parent_node_id = '0xdeadbeef'
        r = RoutingTable(parent_node_id)
        contact1 = PeerNode(PUBLIC_KEY, '192.168.0.1', 9999, self.version, 0)
        contact1.network_id = '0xa'
        contact2 = PeerNode(PUBLIC_KEY, '192.168.0.2', 9999, self.version, 0)
        contact2.network_id = '0xb'
        r.add_contact(contact1)
        # contact2 will have the wrong number of failedRPCs
        r.add_contact(contact2)
        contact2.failed_RPCs = constants.ALLOWED_RPC_FAILS
        # Add something into the cache.
        contact3 = PeerNode(PUBLIC_KEY, '192.168.0.3', 9999, self.version, 0)
        contact3.network_id = '0x3'
        r._replacement_cache[0] = [contact3, ]
        # Sanity check
        self.assertEqual(len(r._buckets[0]), 2)
        self.assertEqual(len(r._replacement_cache[0]), 1)

        r.remove_contact('0xb')
        self.assertEqual(len(r._buckets[0]), 2)
        self.assertEqual(contact1, r._buckets[0]._contacts[0])
        self.assertEqual(contact3, r._buckets[0]._contacts[1])
        self.assertEqual(len(r._replacement_cache[0]), 0)
Example #17
0
    def test_remove_contact_with_not_enough_RPC_fails(self):
        """
        Ensures that the contact is not removed if it's failedRPCs counter is
        less than constants.ALLOWED_RPC_FAILS
        """
        parent_node_id = '0xdeadbeef'
        r = RoutingTable(parent_node_id)
        contact1 = PeerNode(PUBLIC_KEY, '192.168.0.1', 9999, self.version, 0)
        contact1.network_id = '0xa'
        contact2 = PeerNode(PUBLIC_KEY, '192.168.0.2', 9999, self.version, 0)
        contact2.network_id = '0xb'
        r.add_contact(contact1)
        r.add_contact(contact2)
        # Sanity check
        self.assertEqual(len(r._buckets[0]), 2)

        r.remove_contact('0xb')
        self.assertEqual(len(r._buckets[0]), 2)
Example #18
0
    def test_remove_contact_with_not_enough_RPC_but_forced(self):
        """
        Ensures that the contact is removed despite it's failedRPCs counter
        being less than constants.ALLOWED_RPC_FAILS because the 'forced' flag
        is used.
        """
        parent_node_id = '0xdeadbeef'
        r = RoutingTable(parent_node_id)
        contact1 = PeerNode(PUBLIC_KEY, '192.168.0.1', 9999, self.version, 0)
        contact1.network_id = '0xa'
        contact2 = PeerNode(PUBLIC_KEY, '192.168.0.2', 9999, self.version, 0)
        contact2.network_id = '0xb'
        r.add_contact(contact1)
        r.add_contact(contact2)
        # Sanity check
        self.assertEqual(len(r._buckets[0]), 2)

        r.remove_contact('0xb', forced=True)
        self.assertEqual(len(r._buckets[0]), 1)
Example #19
0
 def test_bucket_index_out_of_range(self):
     """
     If the requested id is not within the range of the keyspace then a
     ValueError should be raised.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     # Populate the routing table with contacts.
     for i in range(512):
         contact = PeerNode(PUBLIC_KEY, "192.168.0.%d" % i, 9999,
                            self.version, 0)
         contact.network_id = hex(2 ** i)
         r.add_contact(contact)
     with self.assertRaises(ValueError):
         # Incoming id that's too small.
         r.find_close_nodes(-1)
     with self.assertRaises(ValueError):
         # Incoming id that's too big
         big_id = 2 ** 512
         r.find_close_nodes(big_id)
Example #20
0
 def test_add_contact_with_bucket_split(self):
     """
     Ensures that newly discovered nodes are added to the appropriate
     bucket given a bucket split.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     for i in range(20):
         contact = PeerNode(PUBLIC_KEY, '192.168.0.%d' % i, 9999,
                            self.version, 0)
         contact.network_id = hex(i)
         r.add_contact(contact)
     # This id will be just over the max range for the bucket in position 0
     contact = PeerNode(PUBLIC_KEY, '192.168.0.33', 9999, self.version, 0)
     large_id = int(((2 ** 512) / 2) + 1)
     contact.network_id = hex(large_id)
     r.add_contact(contact)
     self.assertEqual(len(r._buckets), 2)
     self.assertEqual(len(r._buckets[0]), 20)
     self.assertEqual(len(r._buckets[1]), 1)
Example #21
0
 def test_add_contact_with_bucket_full(self):
     """
     Checks if a bucket is full and a new contact within the full bucket's
     range is added then it gets put in the replacement cache.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     # Fill up the bucket
     for i in range(20):
         contact = PeerNode(PUBLIC_KEY, '192.168.0.%d' % i, 9999,
                            self.version, 0)
         contact.network_id = hex(i)
         r.add_contact(contact)
     # Create a new contact that will be added to the replacement cache.
     contact = PeerNode(PUBLIC_KEY, '192.168.0.20', 9999, self.version, 0)
     contact.network_id = hex(20)
     r.add_contact(contact)
     self.assertEqual(len(r._buckets[0]), 20)
     self.assertTrue(0 in r._replacement_cache)
     self.assertEqual(contact, r._replacement_cache[0][0])
Example #22
0
    def test_remove_contact(self):
        """
        Ensures that a contact is removed, given that it's failedRPCs counter
        exceeds or is equal to constants.ALLOWED_RPC_FAILS
        """
        parent_node_id = '0xdeadbeef'
        r = RoutingTable(parent_node_id)
        contact1 = PeerNode(PUBLIC_KEY, '192.168.0.1', 9999, self.version, 0)
        contact1.network_id = '0xa'
        contact2 = PeerNode(PUBLIC_KEY, '192.168.0.2', 9999, self.version, 0)
        contact2.network_id = '0xb'
        r.add_contact(contact1)
        # contact2 will have the wrong number of failedRPCs
        r.add_contact(contact2)
        contact2.failed_RPCs = constants.ALLOWED_RPC_FAILS
        # Sanity check
        self.assertEqual(len(r._buckets[0]), 2)

        r.remove_contact('0xb')
        self.assertEqual(len(r._buckets[0]), 1)
        self.assertEqual(contact1, r._buckets[0]._contacts[0])
Example #23
0
 def test_add_new_contact(self):
     """
     Ensures that a new contact, when added to the kbucket is appended to
     the end of the _contacts list (as specified in the original Kademlia
     paper) signifying that it is the most recently seen contact within
     this bucket.
     """
     range_min = 12345
     range_max = 98765
     bucket = Bucket(range_min, range_max)
     contact1 = PeerNode(PUBLIC_KEY, "192.168.0.1", 9999, 123)
     contact1.network_id = hex(1)
     bucket.add_contact(contact1)
     self.assertEqual(1, len(bucket._contacts),
                      "Single contact not added to k-bucket.")
     contact2 = PeerNode(PUBLIC_KEY, "192.168.0.2", 8888, 123)
     contact2.network_id = hex(2)
     bucket.add_contact(contact2)
     self.assertEqual(2, len(bucket._contacts),
                      "K-bucket's contact list not the expected length.")
     self.assertEqual(contact2, bucket._contacts[-1:][0],
                      "K-bucket's most recent (last) contact wrong.")
Example #24
0
    def test_sort_peer_nodes(self):
        """
        Ensures that the sort_peer_nodes function returns the list ordered in
        such a way that the contacts closest to the target key are at the head
        of the list.
        """
        contacts = []
        for i in range(512):
            contact = PeerNode(PUBLIC_KEY, "192.168.0.%d" % i, 9999,
                               self.version, 0)
            contact.network_id = hex(2 ** i)
            contacts.append(contact)
        target_key = hex(2 ** 256)
        result = sort_peer_nodes(contacts, target_key)

        # Ensure results are in the correct order.
        def key(node):
            return distance(node.network_id, target_key)
        sorted_nodes = sorted(result, key=key)
        self.assertEqual(sorted_nodes, result)
        # Ensure the order is from lowest to highest in terms of distance
        distances = [distance(x.network_id, target_key) for x in result]
        self.assertEqual(sorted(distances), distances)
Example #25
0
    def test_remove_contact_removes_from_replacement_cache(self):
        """
        Ensures that if a contact is signalled to be removed it is also cleared
        from the replacement_cache that would otherwise be another route for
        it to be re-added to the routing table.
        """
        parent_node_id = '0xdeadbeef'
        r = RoutingTable(parent_node_id)
        contact1 = PeerNode(PUBLIC_KEY, '192.168.0.1', 9999, self.version, 0)
        contact1.network_id = '0xa'
        contact2 = PeerNode(PUBLIC_KEY, '192.168.0.2', 9999, self.version, 0)
        contact2.network_id = '0xb'
        r.add_contact(contact1)
        r.add_contact(contact2)
        r._replacement_cache[0] = []
        r._replacement_cache[0].append(contact2)
        # Sanity check
        self.assertEqual(len(r._buckets[0]), 2)
        self.assertEqual(len(r._replacement_cache[0]), 1)

        r.remove_contact('0xb', forced=True)
        self.assertEqual(len(r._buckets[0]), 1)
        self.assertNotIn(contact2, r._replacement_cache[0])
Example #26
0
 def test_split_bucket(self):
     """
     Ensures that the correct bucket is split in two and that the contacts
     are found in the right place.
     """
     parent_node_id = '0xdeadbeef'
     r = RoutingTable(parent_node_id)
     bucket = Bucket(0, 100)
     contact1 = PeerNode(PUBLIC_KEY, '192.168.0.1', 9999, 0)
     contact1.network_id = hex(20)
     bucket.add_contact(contact1)
     contact2 = PeerNode(PUBLIC_KEY, '192.168.0.2', 8888, 0)
     contact2.network_id = hex(40)
     bucket.add_contact(contact2)
     contact3 = PeerNode(PUBLIC_KEY, '192.168.0.3', 8888, 0)
     contact3.network_id = hex(60)
     bucket.add_contact(contact3)
     contact4 = PeerNode(PUBLIC_KEY, '192.168.0.4', 8888, 0)
     contact4.network_id = hex(80)
     bucket.add_contact(contact4)
     r._buckets[0] = bucket
     # Sanity check
     self.assertEqual(1, len(r._buckets))
     r._split_bucket(0)
     # Two buckets!
     self.assertEqual(2, len(r._buckets))
     bucket1 = r._buckets[0]
     bucket2 = r._buckets[1]
     # Ensure the right number of contacts are in each bucket in the correct
     # order (most recently added at the head of the list).
     self.assertEqual(2, len(bucket1._contacts))
     self.assertEqual(2, len(bucket2._contacts))
     self.assertEqual(contact1, bucket1._contacts[0])
     self.assertEqual(contact2, bucket1._contacts[1])
     self.assertEqual(contact3, bucket2._contacts[0])
     self.assertEqual(contact4, bucket2._contacts[1])
     # Split the new bucket again, ensuring that only the target bucket is
     # modified.
     r._split_bucket(1)
     self.assertEqual(3, len(r._buckets))
     bucket3 = r._buckets[2]
     # bucket1 remains un-changed
     self.assertEqual(2, len(bucket1._contacts))
     # bucket2 only contains the lower half of its original contacts.
     self.assertEqual(1, len(bucket2._contacts))
     self.assertEqual(contact3, bucket2._contacts[0])
     # bucket3 now contains the upper half of the original contacts.
     self.assertEqual(1, len(bucket3._contacts))
     self.assertEqual(contact4, bucket3._contacts[0])
     # Split the bucket at position 0 and ensure the resulting buckets are
     # in the correct position with the correct content.
     r._split_bucket(0)
     self.assertEqual(4, len(r._buckets))
     bucket1, bucket2, bucket3, bucket4 = r._buckets
     self.assertEqual(1, len(bucket1._contacts))
     self.assertEqual(contact1, bucket1._contacts[0])
     self.assertEqual(1, len(bucket2._contacts))
     self.assertEqual(contact2, bucket2._contacts[0])
     self.assertEqual(1, len(bucket3._contacts))
     self.assertEqual(contact3, bucket3._contacts[0])
     self.assertEqual(1, len(bucket4._contacts))
     self.assertEqual(contact4, bucket4._contacts[0])